Eye Movements - PowerPoint PPT Presentation

About This Presentation
Title:

Eye Movements

Description:

Eye Movements Smooth pursuit system Smooth pursuit brainstem Eye velocity for pursuit medial vestibular nucleus and nucleus prepositus hypoglossi Project to abducens ... – PowerPoint PPT presentation

Number of Views:116
Avg rating:3.0/5.0
Slides: 76
Provided by: PaulGl5
Learn more at: https://www.cns.nyu.edu
Category:
Tags: eye | movements | reflex | what

less

Transcript and Presenter's Notes

Title: Eye Movements


1
Eye Movements
2
1. The Plant
3
The Oculomotor Plant Consists Of only 6 muscles
in 3 pairs
4
This Yields 3 degrees of Mechanical Freedom
5
Donders Law/ Listings Law
Neural Constraints Reduce this to 2 degrees of
freedom
6
3-D eye movements
  • Donders Law
  • Relates torsion to eye position
  • Listings law
  • Torsion results from rotation of eye around
    perpendicular axis
  • Listings plane
  • Plane orthogonal to line of sight
  • Does not apply when head is free

7
Kinematics vs Dynamics In the Oculomotor System
Rotations about the Center of Gravity No
Loads No Inertia Force Position
8
Oculomotor muscles and nerves
  • Oculomotor nerve (III)
  • Medial rectus
  • Superior/Inferior recti
  • Inferior oblique
  • Trochlear nerve (IV)
  • Superior oblique
  • Abducens nerve (VI)
  • Lateral rectus
  • Medial longitudinal fasciculus

9
2. The Behaviors
Gaze Holding VOR OKN Gaze Shifting Saccades
Vergence Smooth Pursuit
10
Classes of eye movements
  • Reflexive gaze stabilization
  • VOR
  • Stabilize for head movements
  • Optokinetic
  • Stabilize for image motion
  • Voluntary gaze shifting
  • Saccades
  • Acquire stationary target
  • Smooth pursuit
  • Acquire moving target
  • Vergence
  • Acquire target in depth

11
Gaze During Nystagmus
12
Saccades
13
(No Transcript)
14
3-D Gaze Trajectory
Vergence
15
(No Transcript)
16
2. The Motor Neurons
17
Force Patterns
Robinsons Lollipop Experiments Statics Dynamics
18
Oculomotor Neurons During Static Gaze
19
Dynamics and Statics
20
(No Transcript)
21
3. VOR
22
(No Transcript)
23
(No Transcript)
24
(No Transcript)
25
(No Transcript)
26
(No Transcript)
27
Cupula and otoliths move sensory receptors
Cristae
Maculae
28
(No Transcript)
29
(No Transcript)
30
Angular Acceleration
Angular Velocity
Angular Position
Cupula Deflection
31
Canal afferents code velocity
  • Spontaneous activity allows for bidirectional
    signaling
  • S-curve is common
  • Different cells have different ranges and
    different dynamics
  • Population code

32
Canal Output During Slow Sinusoidal Rotation
33
VOR With and Without Vision
34
rVOR gain varies with frequency
  • Almost perfect gt 1Hz
  • Low gain for low frequencies (0.1Hz)
  • Sensory mechanisms can compensate (optokinetic
    reflex)

35
(No Transcript)
36
Oculomotor muscles and nerves
  • Oculomotor nerve (III)
  • Medial rectus
  • Superior/Inferior recti
  • Inferior oblique
  • Trochlear nerve (IV)
  • Superior oblique
  • Abducens nerve (VI)
  • Lateral rectus

37
The 3-Neuron ArcPrimary Effects of Canals on Eye
Muscles
  • Canal Excites
    Inhibits
  • Horizontal Ipsi MR, Contra LR Ipsi LR,
    Contra MR
  • Anterior Ipsi SR, Contra IO Ipsi
    IR, Contra SO
  • Posterior Ipsi SO, Contra IR Ipsi
    IO, Contra SR

38
Robinsons Model of the VOR
39
Robinson
40
4. OKN
41
Type I Vestib Neuron
42
Bode Plot of OKN
43
(No Transcript)
44
Bode Plot of VOR
45
Bode Plot of OKN
46
5. Saccades
47
(No Transcript)
48
(No Transcript)
49
(No Transcript)
50
(No Transcript)
51
Saccadic system
52
OPN Stimulation
53
Brainstem saccadic control
  • Paramedian pontine reticular formation (PPRF)
  • Burst and omnipause neurons
  • Aim to reduce horizontal motor error
  • Project to directly to lateral rectus motor
    neurons
  • Projects indirectly to contralateral medial
    rectus
  • Medial longitudinal fasciculus
  • Mesencephalic reticular formation
  • Also influenced by omnipause neurons
  • Vertical motor error
  • Projects to superior and inferior rectus motor
    neurons

54
(No Transcript)
55
(No Transcript)
56
(No Transcript)
57
Robinsons Model of the VOR
58
(No Transcript)
59
Lee, Rohrer and Sparks
60
Jay and Sparks
61
(No Transcript)
62
(No Transcript)
63
5. Pursuit
64
(No Transcript)
65
Smooth pursuit
  • Track movement on part of retina
  • Two theories
  • Motor (Robinson)
  • Retinal slip only provides velocity
  • Does not capture pursuit onset
  • Sensory (Lisberger and Krauzlis)
  • Position, velocity and acceleration

66
Smooth pursuit system
67
Smooth pursuit brainstem
  • Eye velocity for pursuit medial vestibular
    nucleus and nucleus prepositus hypoglossi
  • Project to abducens and oculomotor nuclei
  • Input from flocculus of cerebellum encodes
    velocity
  • PPRF also encodes velocity
  • Input from vermis of cerebellum encodes velocity
  • Dorsolateral pontine nucleus
  • Relays inputs from cortex to cerebellum and
    oculomotor brainstem

68
Smooth pursuit cortex
  • Visual motion areas MT and MST
  • Active in visual processing for pursuit
  • Stimulation influences pursuit speed
  • Projects to DLPN and FEF
  • Does not initiate pursuit
  • Frontal eye fields
  • Stimulation initiates pursuit
  • Lesions diminish pursuit

69
(No Transcript)
70
(No Transcript)
71
(No Transcript)
72
(No Transcript)
73
Jergens
74
Scudder
75
(No Transcript)
Write a Comment
User Comments (0)
About PowerShow.com