Cluster Models P. Descouvemont Physique Nucl - PowerPoint PPT Presentation

About This Presentation
Title:

Cluster Models P. Descouvemont Physique Nucl

Description:

irfu.cea.fr – PowerPoint PPT presentation

Number of Views:95
Avg rating:3.0/5.0
Slides: 43
Provided by: Descouvemont
Category:

less

Transcript and Presenter's Notes

Title: Cluster Models P. Descouvemont Physique Nucl


1
Cluster ModelsP. DescouvemontPhysique
Nucléaire Théorique et Physique Mathématique,
CP229,Université Libre de Bruxelles, B1050
Bruxelles - Belgium
  1. Evidences for clustering
  2. Cluster models non-microscopic (nucleus-nucleus
    interaction) microscopic (NN
    interaction) continuum states
  3. Application 1 5H and 5He (microscopic 3 body)
  4. Application 2 triple a process
    (non-microscopic)
  5. Application 3 18F(p,a)15O (reaction, microscopic
    2 body)
  6. Conclusions

2
Introduction
  • Clustering well known effect in light nuclei
  • Nucleons are grouped in clusters
  • Best candidate a particle (high binding energy,
    almost elementary particle) ? Ikeda diagram
    cluster states near a threshold (8Be, 20Ne, etc
  • Halo nuclei special case of cluster states
  • Beyond the nucleon level hypernuclei quarks
    etc.

3
1. Evidence for clustering
  • Large distance between the clusters? wave
    function important at large distancesExample
    a16O

3-
cluster
1-
a16O
4
Non-cluster
2
0
20Ne
Comparison of radiia1.4 fm, 16O2.7 fm For 20Ne
0 ltr2gt1/23.9 fm For 20Ne 1- ltr2gt1/25.6
fm
4
Evidence for clustering
  • Large reduced width

Defines the reduced width g2 (Plpenetration
factor)
gW2Wigner limit3?2/2ma2
7Li a cluster states and neutron cluster
states
q2(a)0.01q2(n)0.26
q2(a)0.52q2(n)0
5
Evidence for clustering
Exotic cluster structure 6He6He in 12BeM.
Freer et al, Phys. Rev. Lett. 82 (1999) 1383
Rotational bandE(J)E0?2J(J1)/2mR2 With
Rdistance ? estimate CalculationP.D., D. Baye,
Phys. Lett. B505 (2001) 71Mixing of 6He6He and
a8He
Particular cluster structure halo nuclei
11Be10Ben 6Heannneutronsimplest
cluster
6
Cluster models vs ab initio models
  • cluster models assume a cluster structure ?
    effective nucleon-nucleon interaction ? direct
    access to continuum states
  • microscopic (full antisymmetrization, depend on
    all nucleons)
  • non microscopic (nucleus-nucleus interaction)
  • semi-microscopic (approximate treatment of
    antisymmetrization)
  • ab initio models more general try to determine
    a cluster structure realistic nucleon-nucleon
    interaction
  • Antisymmetrized Molecular Dynamics (AMD)
  • Fermionic Molecular Dynamics (FMD)
  • No Core Shell Model (NCSM)
  • Greens Function Monte Carlo
  • Etc

7
2. Cluster Models
  • Several variants
  • Non microscopic ? 2 clusters nucleus-nucleus
    interaction ? 3 clusters
  • Microscopic ? 2 clusters nucleon-nucleon
    interaction
  • ? 3 clusters

y
x
8
Cluster Models
  • 2-cluster models
  • General description
  • Microscopic approach The generator coordinate
    method (GCM)
  • Continuum states the R-matrix method
  • 3-cluster models
  • Hyperspherical coordinates
  • General description

9
2-body models
Non-microscopic 2 particles without structure
potential model
  • Microscopic (cluster approx.)RGM, GCM

r
r
ex aa, p16O, etc.
F1 ,F2internal wave functions Solved by the
GCM ex 12Ca, 18Fp, etc.
10
The Generator Coordinate Method (GCM) for 2
clusters
The wave functions are expanded on a gaussian
basis 1. potential model (non
microscopic) Schrödinger equation Expansion
? rquantal relative coordinate Rngenerator
coordinate (variational calculation)
11
The Generator Coordinate Method (GCM) for 2
clusters
2. Microscopic
RGM notation
GCM expansion
Slater Determinants
GCM notation
? the basis functions are projected Slater
determinants (b1b2b) ? variational calculation
needs matrix elements
? matrix elements between Slater determinants
(projection numerical)? can be extended to
3-clusters
12
Continuum states
  • Necessary for reactions
  • Exotic nuclei low Q value ? continuum
    important
  • Simple for 2 clusters, difficult for 3 clusters
  • Various methods
  • Exact calculation of the phase shift
  • Approximations Complex scaling, Analytic
    continuation (ACCC), box, etc. (in general,
    only resonances)
  • Use of the R-matrix method the space is divided
    into 2 regions (radius a)
  • Internal r a Nuclear coulomb
    interactions antisymetrization important
  • External r gt a Coulomb only
    antisymetrization negligible

13
The R-matrix method phase-shift calculation
  • 2 body calculations (spins zero)

Internal wave function combination of Slater
determinants
External wave function Coulomb (Ulcollision
matrix)
Bloch-Schrödinger equation
  • With L Bloch operator
  • restore the hermiticity of H over the internal
    region)
  • ensures

14
The R-matrix method phase-shift calculation
Solution of the Bloch-Schrödinger equation
R-matrix equations
? N1 unknown quatities (Ul, fl(Rn)), N1
equations ? ltgtImatrix element over the internal
region ? stability with the channel radius a is
a strong test
15
3-body models Hyperspherical coordinates
Jacobi coordinates x1, y1 3 sets (xi, yi), i1,2,3
y1

x1
Hyperspherical coordinates
6 coordinates
Hamiltonian
16
Kinetic energy
  • With K2(W) angular operator (equivalent to L2
    in two-body systems)
  • Eigenfunctions
  • hyperspherical harmonics
  • Eigenvalues K(K4)
  • With lx, ly angular momenta associated with
    x, y
  • K hypermoment
  • FK(a) Jacobi polynomial
  • Spin
    with S total spin

17
Schrödinger equation
YJMp is expanded over the hyperspherical harmonics
To be determined
Known functionshyperspherical harmonics
  • glx,ly,L,S
  • Set of equations for
  • Truncation at K Kmax
  • Can be extended to 4-body, 5-body, etc

18
Three-body Models
Non microscopic
Microscopic
y1
x1
Hamiltonian
Hamiltonian
Vijnucleus-nucleus interactionProblems with
forbidden states Ex 6Heann 12Caaa 14Be1
2Benn
Vijnucleon-nucleon interaction Ex
6Heann 5Htnn
Projection 7-dim integrals
19
3. Application to 5H and 5HeA. Adahchour and
P.D., Nucl. Phys. A 813 (2008) 252
  • 3.1Introduction
  • 5H unbound, with N/Z4 very large value
  • Expected 3-body structure 3Hnn
  • Many works experiment theory
  • Difficult for theory and experiment (unbound AND
    3-body structure) ? still large uncertainties on
  • ground state (Energy, width)
  • level scheme?
  • Isospin symmetry ? expected 5He(T3/2) analog
    states (suggested by Ter-Akopian et al., EPJ
    A25 (2005) 315)

20
Application to 5H and 5He
3.2 Conditions of the calculation microscopic
3-cluster
NN interaction Minnesota HH0uV (uadmixture
parameter in the Minnesota interaction u1) From
3Hep u1.12
21
Application to 5H and 5He
Cluster structure
n
x
5H3Hnn Tz3/2,T3/2
y
5He3Henn coupled with 3Hnp Tz1/2,
T1/2,3/2
Main difficulty unbound states ? need for
specific methods ACCC
22
Application to 5H and 5He
  • 3.3 Analytic Continuation in the Coupling
    Constant (ACCC) V.I. Kukulin et al., J. Phys. A
    10 (1977) 33
  • Write H as HH0lV (l1 is the physical value,
    E(l1)gt0? unbound state)
  • Determine l0 such as E(l0)0
  • For l gt l0 E(l)lt0 ? bound-state calculation
  • l gt l0 x real, k imaginary, E real lt0
  • l lt l0 x imaginary, k complex, Ek2ER-iG/2 ?
    the width can be computed

Padé approximant
  • Choose MN1 l values l gt l0 ? determine ci,dj
  • Use l1 ? k complex
  • ? Main problem stability!

23
Application to 5H and 5He(T3/2)
5H,5He
T3/2 state??3-body decay an and td forb.
3Henn
3Hnp
5H
3Hnn
5He
T1/2 states an structure
4Hen
24
Application to 5H and 5He(T3/2)
Microscopic wave function
ci(r) expanded in gaussians centred at R
Generator Coordinate Method Energy curves E(R)
eigenvalue for a fixed R value
5H
Convergence with Kmax
Different J values
? fast convergence
? 1/2 expected to be g.s.
25
3. Results for 5H and 5He(T3/2)
Application of the ACCC method ? search for
resonance energies and widths ? test of the
stability with N (Padé approximant)
Er 2 MeVG 0.6 MeV ? theoretical
uncertainties
26
3. Results for 5H and 5He(T3/2)
5He
Energy curves
Weak coulomb effectsessentially threshold
27
3. Results for 5H and 5He(T3/2)
Th.1 N.B. Shulgina et al., Phys. Rev. C 62
(2000) 014312 Th.2 P.D. and A. Kharbach, Phys.
Rev. C 63 (2001) 027001 Th.3 K. Arai, Phys.
Rev. C 68 (2003) 03403 Th.4 J. Broeckhove et
al., J. Phys. G. 34 (2007) 1955 Exp.1 A.A.
Korsheninnikov et al., PRL 87 (2001)
092501 Exp.2 M.S. Golovkov et al., PRL 93
(2004) 262501
? broad state in 5He Ex21.3 MeV G1 MeV
28
4. Application to 12C
poorly known
  • Main issues
  • Simultaneous description of a-a scattering and of
    12C?
  • Bose-Einstein condensate?
  • Astrophysics (Triple-a process, Hoyle state
    others?)

aaa
Well known
  • Two approaches
  • Microscopic theory
  • Non microscopic theory ? 3a continuum states?

29
4. Application to 12C
  • Microscopic models
  • RGM M. Kamimura (Nucl. Phys.A 351 (1981) 456)
    form factors of 12C
  • GCM E. Uegaki et al., PTP62 (1979) 1621
    triangle structure of 12C P.D., D.Baye, Phys.
    Rev. C36 (1987) 54 8Bea model 8Be(a,g)12C S
    factor 2 resonance (with the 02 state as
    bandhead)
  • GCM hyperspherical formalism aaaM. Theeten
    et al., Phys. Rev. C 76 (2007) 054003 Only 12C
    spectroscopy (energies, B(E2), densities)

30
a-a phase shifts
12C microscopic
12C Energy spectrum
12C energy curves
GCM
exp
31
Application to 12C
B. Non-Microscopic model
  • aa scattering well described by different
    potentials
  • deep potentials (Buck potential)
  • shallow potentials (Ali-Bodmer potentials)
  • we may expect a good description of the 3a system
  • Removal of a-a forbidden states projection
    method (V. Kukulin) supersymmetric
    transformation (D. Baye)
  • Buck potential (Nucl. Phys. A275 (1977) 246)
  • V-122.6 exp(-(r/2.13)2)
  • deep
  • l independent
  • Others a-a phase shifts have a similar quality

32
12C spectrum, J0
0
-2
-4
Ali-Bodmer potential(shallow)
Buck potential (deep)
-6
ABD0
AB
Bucksup
Bucksup x 1.088
Buck proj
exp
? no satisfactory potential!!
33
Application to 12C
  • Calculation of 3a phase shifts
  • Need for appropriate a-a potentials (3a
    potentials?)
  • Derivation of a-a potentials
  • from RGM kernels (non local)
  • M. Theeten et al., PRC 76 (2007) 054003
  • Y. Suzuki et al., Phys. Lett. B659 (2008) 160
  • Fish-bone model reproduces aa and aaa
  • Z. Papp and S. Moszkowski, Mod. Phys. Lett. 22
    (2008) 2201
  • Non local potentials ? difficult for 3-body
    continuum states
  • Microscopic approach to 3-body continuum
    states?In progress for ann

34
5. Application to 18F(p,a)15O Ref. M. Dufour
and P.D., Nucl. Phys. A785 (2007) 381
  • Very important for novae
  • Many experimental works
  • Direct (18F beam)
  • Indirect (spectroscopy of 19Ne)
  • 2 recent experiments
  • Microscopic cluster calculation (19-nucleon
    system)
  • High level density ? limit of applicability
  • Questions to address
  • Spectroscopy of 19F and 19Ne (essentially
    J1/2,3/2 s waves)
  • 18F(p,a)15O S-factor
  • How to improve the current status on 18F(p,a)15O?

35
Application to 18F(p,a)15O
  • NN interaction modified Volkov (reproduces the Q
    value) spin-orbit
  • Multichannel p18F a15O n18Ne
  • Shell model space sd shell for 18F, 18Ne, p
    shell for 15O ? 18F J1 (x7), 0 (x3), 2
    (x8), 3 (x6), 4 (x3), 5 (x1) 15O J1/2-,
    3/2- 18Ne J0 (x3), 1 (x2), 2 (x5), 3
    (x2), 4 (x2)
  • ? many configurations
  • Spectroscopy of 19Ne and continuum states
    (R-matrix theory)
  • At low energies (below the Coulomb barrier), s
    waves are dominant ? J1/2 and 3/2

36
J3/2
19
E
(
Ne)
19
E
(
F)
cm
cm
Experiment
Theory
1
5
18
n
F
18
n
F
0
4
18
p
O
3
-1
-2
2
18
Fitted (NN int)
p
O
7.24
7.26
-3
1
7.08
6.53
18
18
p
F
p
F
6.44
0
-4
6.50
6.42
5.50
-5
-1
15
15
-6
-2
a

N
a

N
4.03
15
a

O
3.91
-7
-3
15
a

O
-4
-8
1.54
1.55
-9
-5
19
19
19
19
Ne
F
F
Ne
37
J1/2 (no parameter)
Ecm (19Ne)
19
E
(
F)
cm
Experiment
Theory
1
5
18
18
n
F
n
F
0
4
18
p
O
-1
3
8.65
Near threshold
-2
2
8.14
?
18
p
O
7.36
-3
1
18
18
p
F
p
F
6.26
-4
0
5.94
(5.34)
5.35
-5
-1
-6
-2
15
15
a

N
a

N
15
15
a

O
a

O
-7
-3
-8
-4
-9
-5
-10
-6
0
0
-11
19
19
19
19
-7
Ne
F
F
Ne
38
  • Microscopic 18F(p,a)15O S factor

1/2 s wave ? important down to low energies?
(constructive) interference with the subthreshold
state
39
  • Drawbacks of the model
  • Some 3/2 resonances missing
  • 1/2 properties not exact (in 19F, unknown in
    19Ne)
  • R matrix allows to add resonances (3/2) or to
    modify their properties (1/2)

E
(MeV)
cm
2
2
7.90
known in 19Funknown in 19Ne
1
1
18
p
F
?modified 19Ne spectrum
0
18
n
F
6.00
0
-1
5.35
-1
-2
Theory
exp.
15
a

O
-3

J1/2
19F, J1/2
-4
-5
-6
0
19
-7
Ne
? prediction of two 1/2 states E-0.41 MeV,
G231 keV E 1.49 MeV, G296 keV, Gp/G0.53
40
  • 18F(p,a)15O S factor

3/2 resonancesinterferences?
  • Consistent with experiment
  • Uncertainties due to 3/2 strongly reduced near
    0.2 MeV (1/2 dominant)

41
  • Two recent experiments

J.-C. Dalouzy et al Ganil LLN, Ref Phys. Rev.
Lett. 102, 162503 (2009) 19Nep? 19Nep ? 18Fpp
18Fp
19Ne
? evidence for a broad 1/2 peak (E) near
Ecm1.45 MeV, G292?107 keV Cluster calculation
Ecm1.49 MeV, G296 keV
42
  • A.C. Murphy et al
  • Edinburgh TRIUMF (radioactive 18F beam) Phys.
    Rev. C79 (2009) 058801
  • Simultaneous measurement of 18F(p,p)18F and
    18F(p,a)15O cross sections
  • R-matrix analysis ? many resonances

? no evidence for a 1/2 resonance (E too low?)
43
6. Conclusions
  • Cluster models
  • Different variants microscopic semi-microscopi
    c non microscopic
  • Continuum accessible (R-matrix)
  • 5H, 5He(T3/2)
  • 5H resaonable agreement with other works
  • 5He (T3/2) analog state of 5H above 3Hnp
    threshold ? Ex21.3 MeV, G1 MeV
  • 12C
  • Impossible to reproduce 2a and 3a simultaneously
    (all models)
  • 3a continuum future microscopic studies possible
    (ann in progress)
  • 18F(p,a)15O
  • The GCM predicts a 1/2 resonance (s wave) near
    the 18Fp threshold
  • Observed in an indirect experiment
  • Not observed in a direct experiment
Write a Comment
User Comments (0)
About PowerShow.com