Engineering Fundamentals - PowerPoint PPT Presentation

About This Presentation
Title:

Engineering Fundamentals

Description:

Engineering Fundamentals Session 6 (1.5 hours) – PowerPoint PPT presentation

Number of Views:21
Avg rating:3.0/5.0
Slides: 21
Provided by: kenj155
Category:

less

Transcript and Presenter's Notes

Title: Engineering Fundamentals


1
Engineering Fundamentals
  • Session 6 (1.5 hours)

2
Scaler versus Vector
  • Scaler (??) described by magnitude
  • E.g. length, mass, time, speed, etc
  • Vector(??) described by both magnitude and
    direction
  • E.g. velocity, force, acceleration, etc

Quiz Temperature is a scaler/vector.
3
Representing Vector
  • Vector can be referred to as
  • AB or a or a
  • Two vectors are equal if they have the same
    magnitude and direction
  • Magnitudes equal a c or a c
  • Direction equal they are parallel and pointing
    to the same direction

How about these? Are they equal?
4
Opposite Vectors
  • magnitudes are equal,
  • parallel but opposite in sense
  • These two vectors are not equal
  • Actually, they have the relation
  • b -a

5
Rectangular components of Vector
  • A vector a can be resolved into two rectangular
    components or x and y components
  • x-component ax
  • y-component ay
  • a ax, ay

y
x
6
Addition of Vectors
V1 V2
V2
V1
V1
V1
V1 V2
V2
V2
Method 2
Method 1
7
Subtraction of Vectors
-V2
V1
V1 - V2
V1
-V2
V2
8
Scaling of vectors (Multiply by a constant)
V1
V1
2V1
0.5V1
V1
-V1
9
Class work
  • Given the following vectors V1 and V2. Draw on
    the provided graph paper
  • V1V2
  • V1-V2
  • 2V1

V1
V2
10
Class Work
  • For V1 given in the previous graph
  • X-component is _______
  • Y-component is _______
  • Magnitude is _______
  • Angle is _________

11
Rectangular Form and Polar Form
  • For the previous V1
  • Rectangular Form (x, y)
  • 4, 2
  • Polar Form (r, ?)
  • v20 26.57 ? or (v20 , 26.57 ? )

y-component
x-component
angle
magnitude
12
Polar Form ? Rectangular Form
  • Vx V cos ?
  • Vy V sin ?

magnitude of vector V
13
Example
  • Find the x-y components of the following vectors
    A, B C
  • Given
  • A2, ?A 135o
  • B4, ?B 30o
  • C2, ?C 45o

A
?A
C
?B
?C
B
14
Example (Contd)
  • For vector A,
  • Ax2 x sin(135o) ?2, Ay2 x cos(135o)-?2
  • For vector B,
  • Bx4 x sin(210o) -4 x sin(60o)-2,
  • By4 x cos(210o) -4 x cos(60o)-2?3
  • For vector C,
  • Cx2 x sin(45o) ?2, Cy2 x cos(45o)-?2

15
Example
  • What are the rectangular coordinates of the point
    P with polar coordinates (8, p/6)
  • Solution
  • use xrsin ? and yrcos ?
  • x8sin(p/6)8(?3/2)4?3
  • y8cos(p/6)8(1/2)4
  • Hence, the rectangular coordinates are (4?3,4)

16
Rectangular Form -gt Polar Form
  • Given (Vx, Vy), Find (r, ?)
  • R ? Vx2 Vy2 (Pythagorus Theorm)
  • ? tan -1 (Vx / Vy) ? Will only give answers in
    Quadrants I and VI
  • Need to pay attention to what quadrant the vector
    is in

17
How to Find Angle?
  • Find the positive angle Ø tan-1 (Vy/Vx)
  • ? Ø or 180-Ø or 180Ø or Ø, depending on what
    quadrant.

Absolute value (remove the negative if any)
180-Ø
Ø
Ø
Ø
Ø
Ø

180Ø
18
Classwork
  • Find the polar coordinates for the following
    vectors in rectangular coordinates.
  • V1 (1,1) r____ ?_______
  • V2(-1,1) r____ ?_______
  • V3(-1,-1) r____ ?_______
  • V4(1,-1) r____ ?_______

19
Class work
  • a (6, -10) r____ ?_______
  • b (-6, -10) r____ ?______
  • c (-6, 10) r____ ?______
  • d (6, 6) r____ ?_______

20
Concept Map
V
notation
V
AB
Vectors
operations
Scalar multiplication
representation
Rectangular Form (Vx,Vy)
2 V
Subtraction-
conversion
V1 V2
Addition
Polar Form (r, ?)
V1 V2
Beware of the quadrant, and use of tan-1 !!!
Angle or phase
magnitude
Write a Comment
User Comments (0)
About PowerShow.com