Stephen Hill NHMFL and Florida State University, Physics - PowerPoint PPT Presentation

1 / 28
About This Presentation
Title:

Stephen Hill NHMFL and Florida State University, Physics

Description:

Stephen Hill NHMFL and Florida State University, Physics Outline of talk: Idea behind the title of this talk Nice recent example: Radical Ferromagnet – PowerPoint PPT presentation

Number of Views:90
Avg rating:3.0/5.0
Slides: 29
Provided by: Stephen805
Category:

less

Transcript and Presenter's Notes

Title: Stephen Hill NHMFL and Florida State University, Physics


1
Stephen HillNHMFL and Florida State University,
Physics
EPR Studies of Heavy Atom Molecule-Based Magnets
  • Outline of talk
  • Idea behind the title of this talk
  • Nice recent example Radical Ferromagnet
  • Mononuclear nanomagnets based on Lanthanide ions
  • CW and pulsed EPR studies of Ho system
  • Coherent quantum tunneling dynamics

2
Stephen HillNHMFL and Florida State University,
Physics
EPR Studies of Heavy Atom Molecule-Based Magnets
In collaboration with Radical
Ferromagnets Steven Winter and Richard
Oakley, U. Waterloo Saiti Datta and Alexey
Kovalev (NHMFL Postdocs) Holmium
polyoxometallate Saiti Datta and Sanhita
Ghosh (FSU/NHMFL postdoc/student) Eugenio
Coronado and Salvador Cardona-Serra, U. Valencia,
Spain Enrique del Barco, U. Central Florida
3
Heavy Atom Radical Ferromagnets
Record Tc 17K Hc 0.15 T
Oakley et al., JACS 130, 14791 (2008) JACS 131,
7112 (2009)
4
Radicals well known to EPR spectroscopists
Tryptophan (Trp) radical in azurin, an electron
transfer protein
S. Stoll, D. Britt UC Davis
  • g tensor characteristic of microenvironment .
  • Compare to electronic structure calculations.
  • Crucial for systems with small g anisotropy
    (tryptophans, tetra-pyrroles, e.g.,
    chloro-phylls, and organic photovoltaic materials)

Stoll et al., JACS 132, 11812 (2010) JACS 131,
1986 (2009).
5
Heavy Atom Radical Ferromagnets
Record Tc 17K Hc 0.15 T
9.0
8.7
8.4
Resonance field (tesla)
1 HA 0.8 T 2 HA 0.45 T
8.1
7.8
6
Heavy Atom Radical Ferromagnets
Record Tc 17K Hc 0.15 T
Hubbard Hamiltonian with spin-orbit (s) and
hopping (h) perturbations
7
Mononuclear Lanthanide Single Molecule Magnets
Hunds rule coupling for Ho3 L 6, S 2, J
8 5I8 Axial ligand-field mJ 5 I 7/2
nuclear spin (100)
8
Mononuclear Lanthanide Molecular Nanomagnets
Based on Polyoxometalates
Ln(W5O18)29- (LnIII Tb, Dy, Ho, Er, Tm, and
Yb)
D4d
9
Mononuclear Lanthanide Molecular Nanomagnets
Based on Polyoxometalates
Er3 compound
Er3 and Ho3 Exhibit some SMM characteristics
10
Mononuclear Lanthanide Molecular Nanomagnets
Based on Polyoxometalates
Fits to cmT NMR
11
Mononuclear Lanthanide Molecular Nanomagnets
Based on Polyoxometalates
Hunds rule coupling for Ho3 L 6, S 2, J
8 5I8
gJ 5/4
Ground state mJ 4
Ho3 Xe4f10
12
Mononuclear Lanthanide Molecular Nanomagnets
Based on Polyoxometalates
Hunds rule coupling for Ho3 L 6, S 2, J
8 5I8
gJ 5/4
  • Other relevant details
  • 100 I 7/2 nuclear spin
  • Strong hyperfine coupling
  • Dilution HoxY1-x(W5O18)29-
  • Na charge compensation
  • H2O solvent

Ho3 Xe4f10
13
High(ish) frequency EPR of HoxY1-x(W5O18)29- (x
0.25)
Broad 8 line spectrum due to strong hyperfine
coupling to Ho nucleus, I 7/2
B//c
14
High(ish) frequency EPR of HoxY1-x(W5O18)29- (x
0.25)
  • Nominally (strongly) forbidden transitions mJ
    -4 ? 4, DmI 0
  • This suggests mixing (tunneling) of mJ states (no
    EPR for f gt 100 GHz)

Next excited level at least 20-30 cm-1 above
1 K 21 GHz 1 cm-1 30 GHz
B//c
15
Angle-dependence HoxY1-x(W5O18)29- single
crystal (x 0.25)
  • Indicative of strong anisotropy associated with J
    8 ground state
  • Note hyperfine splitting also exhibits
    significant anisotropy

16
Full Matrix Analysis of the Angle-dependence
gz 1.06 A 835 MHz (0.0278 cm-1)
  • Simulations assume isotropic g
  • data do not constrain gxy so well
  • Free ion g 1.25

D 0.600 cm-1, B04 6.94 10-3 cm-1, B06
-4.88 10-5 cm-1
Ligand field parameters from AlDamen et al.,
Inorg. Chem. 48, 3467 (2009)
17
Standard CW X-band EPR of HoxY1-x(W5O18)29- (x
0.25)
Multi-frequency studies does D4d
parameterization hold water?
f 9.5 GHz
18
Standard CW X-band EPR of HoxY1-x(W5O18)29- (x
0.25)
Multi-frequency studies does D4d
parameterization hold water?
f 9.5 GHz
19
Standard CW X-band EPR of HoxY1-x(W5O18)29- (x
0.25)
D4d symmetry approximate ? natural to add
9 GHz tunneling gap - D
f 9.5 GHz
20
Standard CW X-band EPR of HoxY1-x(W5O18)29- (x
0.25)
Standard B1 ? B0 configuration
Parallel mode (B1//B0)
21
Pulsed X-band EPR of HoxY1-x(W5O18)29- (x
0.25)
Rabi oscillations remarkably long T2
T1 1 ms T2 140 ns
T 4.8 K
Hahn echo sequence
22
Pulsed X-band EPR of HoxY1-x(W5O18)29- (x
0.25)
Rabi oscillations remarkably long T2
Cr7Ni (S 1) 0.2mg/mL, T2 300 ns _at_ 5K Ardavan
et al., PRL 98, 057201 (2007) Fe4 0.5g/mL, 95
GHz and B 0 Schlegel et al., PRL 101, 147203
(2008) Fe8 240 GHz and 4.6 T (kBT 11.5
K) Takahashi et al., PRL 102, 087603 (2009)
Fe4
S 5
T 4.8 K
T2 140 ns
Fe8 S 10
23
Pulsed X-band EPR of HoxY1-x(W5O18)29- (x
0.25)
Echo-detected spectrum is T2 weighted
Spectrum also sensitive to pulse sequence
24
Pulsed X-band EPR of HoxY1-x(W5O18)29- (x
0.25)
Competing anisotropies (TUNNELING) ? no
longer obvious what is parallel/perpendicular
25
Pulsed X-band EPR of HoxY1-x(W5O18)29- (x
0.25)
Cancelation resonances ? significant reduction in
decoherence
Note excitation bandwidth Comparable to linewidth
26
Pulsed X-band EPR of HoxY1-x(W5O18)29- (x
0.25)
COHERENT QUANTUM TUNNELING
Note excitation bandwidth Comparable to linewidth
27
Pulsed X-band EPR of HoxY1-x(W5O18)29- (x 0.1)
  • Sample not perfectly aligned shift to consistent
    with simulations
  • Cancelation resonances now stronger than the
    standard ones!!
  • T2 factor of two larger for cancelation resonances

Impurity in cavity
T2 200 ns
28
Pulsed X-band EPR concentration dependence
Electron-Spin-Echo- Envelope-Modulation (ESEEM)
1.2 ms
ESEEM frequency Consistent with Coupling to
protons
Write a Comment
User Comments (0)
About PowerShow.com