Title: Natural Deduction:
1Natural Deduction Using simple valid argument
forms as demonstrated by truth-tablesas rules
of inference. A rule of inference is a rule
stating that whenever premises of certain forms
occur, conclusions of a certain form follow
necessarily.
First, we need to focus on the main operator of
the statements we encounter, so we can be on the
lookout for FORMS of valid inferences.
2p . q
p gt q
(A v B) . (C v D)
__ gt __
1 gt 2
(S v B) gt W
((W . Y) v X) . (H gt B)
(K gt P) . N gt (A . C)
F . (G v B) . (J gt I)
3Modus Ponens MP
p gt q p ----- q
(B v N) gt M (B v N) ------------- M
A gt C A ------ C
(L gt N) gt (B gt V) L gt N ---------
(H . (J v N)) gt (N . L) H . (J v N) --------
N . L
B gt V
4Modus Tollens MT
p gt q q ----- p
F gt H H ----- F
(J v L) (M . B) gt (J v L) ------- ( M . B)
G v (B . O) gt (D . V) . R (D . V) .
R -------
G v (B . O)
5Disjunctive Syllogism DS
p v q p ----- q
(K v L) v O (K v L) ------ O
(A v (B . D)) A ----- B . D
(T v Y) gt (L . D) v (F . T) v O gt W (T v
Y) gt (L . D) ------
(F . T) v O gt W
6Hypothetical Syllogism HS
p gt q q gt r ------- p gt r
(N . B) gt G G gt ( L v E) ------------- (N . B)
gt (L v E)
M gt (B gt G) (B gt G) gt (F . T) -----------
V gt (O . C) gt P (K v L) gt V -----------------
M gt (F . T)
(K v L) gt (O . C) gt P
7Simplification SM
p . q ------ p
(B v N) . (C gt L) ----- B v N
A . (B gtC) ------ A
8Conjunction CN
p q --- p . q
(M . N) v W D gt K --- ((M . N) v W) . (D gt
K)
9p gt q p / q MP
p gt q q / p MT
p v q p / q DS
p gt q q gt r / p gt r HS
- A gt B
- A gt (C v D)
- B
- C / D
1,3 MT
5. A
2, 5 MP
6. C v D
7. D
4,6 DS
10MP MT DS HS p gt q p gt q p v q p gt q p / q
q / p p / q q gt r / p gt r
- E gt (K gt L)
- F gt (L gt M)
- G v E
- G
- F / K gtM
6. E
3, 4 DS
7. K gt L
1, 6 MP
8. L gt M
2, 5 MP
7,8 HS
9. K gt M
11MP MT DS HS p gt q p gt q p v q p gt q p / q
q / p p / q q gt r / p gt r
- J gt (K gt L)
- L v J
- L / K
- J
- K gt L
- K
2,3 DS
1, 4 MP
5, 3 MT
12MP MT DS HS p gt q p gt q p v q p gt q p / q
q / p p / q q gt r / p gt r
1. (S ? T) gt (P gt Q) 2. (S ? T) gt P 3. P
/ Q 4. (S ? T) 5. P gt Q 6. Q
2,3 MT
1, 4 MP
3,5 MP
13MP MT DS HS p gt q p gt q p v q p gt q p / q
q / p p / q q gt r / p gt r
- H gt E gt (C gt D)
- D gt E
- E v H
- E / C
- H
- 6. E gt (C gt D)
- 7. C gt D
- 8. C gt E
- 9. C
3,4 DS
5,1 MP
4, 6 MP
7, 2 HS
4, 8 MT
14Addition AD
p --- p v q
Constructive Dilemma
(p gt q) . (r gt s) p v r ----- q v s
T v F T
A conjunction of conditionals, plus the
disjunction of their antecedents yields the
disjunction of their consequents.
15Rules of inference (8) MP p gt q / p //
q MT p gt q / q // p HS p gt q / q
gt r // p gt r DS p v q / p // q SM
p . q // p CN p / q // p. q AD p
// p v q CD (p gt q) . (r gt s) / p v r //
q v s
16Rules of inference (mt, mp, ds, etc.) are one
way rules.
Rules of equivalence are two way rules,
allowing substitution of a statement form for an
equivalent statement form.
Rules of equivalence are written using to
indicate two expressions are equivalent to one
another.
17Double Negation p p
Two tildes can be added or deleted from any
statement with no effect on the truth-value.
1.A gt (B . C) 2. B . C
- ( H v K)
- H
3. (B . C) 2 DN 4. A 1,3 MT
3. H v K 1 DN 4. K 2 ,3 DS
18 (p v q)
p . q
neither
not this and not that
(p . q)
p v q
not both
either not this or else not that
DM DeMorgans Theorem
19CM Commutation (p . q) (q . p) (p v q)
(q v p)
The order of statements around a dot or wedge is
of no consequence to the truth-value of the
statement
1. (J gt N) v (C v D) 2. C 3. D / J gtN
- 4. C . D CONJ 2,3,
- 5. (C v D) DM 4
- 6. J gt N COMM, DS 1,5
6. (C v D) v (J gtN) COMM, 1 7. J gt N DS 5, 6
20Association AS p . (q . r) (p . q) .
r p v (q v r) (p v q) v r
The grouping of simple statements around dots
and wedges is of no consequence for
truth-values
1. A . (B . C) / C
2. (A . B) . C AS 1 3. C . (A . B) CM 2 4. C
SM 3