Title: 1????????????? ????????? ??????????? ???????????????? ????????????, 119992, ?????? ???-2, ????????? ????, natalmurav@yandex.ru (495)939-0289
1 ?????? ??????????? 2 ??? ??????? ??????
????????????? ????? ???????? 10 ?? ????????
???????1 ?.?, ??????????1 ?.?, ?????2 ?-?,
???????1 ?.?, ?????1 ?.?, ??????2
? 1????????????? ????????? ???????????
???????????????? ????????????, 119992, ??????
???-2, ????????? ????, natalmurav_at_yandex.ru
(495)939-0289 2Max-Volmer Laboratory of Optics
and Atomic physics, Technical UniVersity Berlin
10623, Germany
2??????????? ???????? ? ???????????
(50?100)?10-9 ?
3(No Transcript)
4(No Transcript)
5The molecular mechanisms scheme for the primary
charges separation (RRP model)
kt
Schatz et al.. Bioph. J. 1988. Kinetic and
energetic model for the primary processes in
photosystem II.
k2kSTABk2
QA?
kAk?0.3 ns?1
Roelofs et al. 1992. Global target analysis of
picosecond chlorophyll fluorescence kinetic from
pea chloroplasts . Biophys. J. 61, 1147
Phe
P680
P680
6(No Transcript)
7Each rectangle represent a particular kinetic
state determined by the redox state? of its
constituent electron carriers. Shaded are the
states capable of emitting fluorescence quanta.
The catalytic cycle of photosystem II.
KEQ kn (ms?1)
1 (4) 10 3.2108 /Neff
Neff 100
2 107 3106
3 80 100?5
5 20 3.5
6 20 1.75
7 4103
8 4105
Chl, the total PSII chlorophyll, including the
antenna and the P680 pigments Phe, pheophytin
QA and QB , primary and secondary quinone
acceptors PQ, plastoquinone PQH2,
plastoquinol HL and Hs are protons released
into lumen and taken up from the stroma,
respectively. Bold arrows mark the light steps.
-
The decay 1Chl via
(?)
radiative fluorescence emission (kFL),
nonradiative dissipation to heat (kHD) by
quenching due to cation radical P680? (kP680) or
by triplet carotenoid states (k3Car)
846, 47, 48, 49
45
z
z
5
1
HL
15
16
17
20
19
14
18
H
H
H
H
H
H
H
s
s
s
s
s
s
s
21
22
23
24
25
26
g
g
g
2
1
43
5
HL
32
28
33
30
29
41
Phe
31
Q
A
x
x
5
1
HL
5
2
6
1
4
7
42
y
y
5
1
HL
???????? ??2, ?????????? ??????
9
12
10
8
11
44
9???????? ??????? ????????? ??????? ? ????? ?? ?
?????????? ??????????? 10-?? ?? ?????????
???????????
??????
Single turnover flash induced transients of the
fluorescence yield (SFITFY)
Belyaeva NE, Schmitt F-J, Steffen, R, Paschenko
VZ, Riznichenko G Yu, Chemeris YuK, Renger G, and
Rubin AB (2008) PS II model-based simulations of
single turnover flash-induced transients of
fluorescence yield monitored within the time
domain of 100 ns10 s on dark-adapted Chlorella
pyrenoidosa cells. Photosynth Res 98 105119
10???????? ????????? ??2, ?????????? 10 ?? ?????????
30?s S0?S1 100?s S1?S2 300?s S2?S3 1ms S3?S0
46, 47, 48, 49
45
z
z
z
5
4
1
HL
15
16
17
20
19
14
18
H
H
H
H
H
H
H
s
s
s
s
s
s
s
21
22
23
24
25
26
g
g
g
g
2
43
1
5
4
HL
32
28
33
30
29
41
Phe
31
Q
A
50ns S0?S1
x
x
x
5
4
1
HL
5
6
2
1
4
7
42
y
y
y
5
4
1
HL
9
10
12
8
11
44
11?????? Arabidopsis thaliana
3Car(t) aCar?exp(?t ??3Car)
Measuring light 0.8 ?mol photons m?2 s?1
kL (t)kL-Max ?exp(-t /?) ?4ns 100 8 4 0.8
kL-Max (s?1) 7.2?109 6?108 3?108 5.2?107
photons/(sm2?flash) 7.5?1016 6.2?1015 3?1015 5.4?1014
12100
kL-Max (ms?1) 1.5?107
4
kL-Max (ms?1) 6?105
kL (t)kL-Max ?exp(-t /(4ns ))
Measuring light 0.8 ?mol photons m?2 s?1
133-quencer model
Steffen R (2003) Time-resolved spectroscopic
investigations of photosystem II. PhD thesis.
Berlin Steffen R, Eckert H-J, Kelly AA, Dörmann
P G and Renger G (2005) Investigations on the
reaction pattern of photosystem II in leaves from
Arabidopsis thaliana by time-resolved
fluorometric analysis. Biochemistry 44 3123?3132
14- ?????? SFITFY ?????? ? ?????? ?? 2
- ???????????? ?????? ?????????
- 2) ??????? ????????? ?? ??????? ?? ?????????????
????? ? ??????? ?? ????????? ?????????? ??????? - 3) ????????? ???????????????? ??????? ???
???????? ????????? ?????????? ?? ???????
?532 nm fwhm10 ns ?532 nm fwhm10 ns kn (s?1) kn (s?1) kn (s?1) aCar ?3Car 5.5 ms pHStroma ??0, mV (??, ms)
photons/ (cm2?flash) kL-Max kHD kPhe aCar ?3Car 5.5 ms pHStroma ??0, mV (??, ms)
7.5?1016 100 7.2?109 1.95?108 8?108 2.08?109 ( 1) 7.5 20(800)
6.2?1015 8.27 5.97?108 1.95?108 7?108 0.27 7.5 15 (500)
3.0?1015 4 2.89?108 1.95?108 6.4?108 0.17 7.5 14 (500)
5.4?1014 0.72 5.2?107 1.65?108 3?108 0.06 7.3 14(400)
??? ????????? ????????????? ???????? ??????????
????????? ????????? ?????????? ??????????? ?
??????? ? ??? ???????????? ???????.
QA?? QB 16 5.0
QA?? QB? 10 1.75
???????? ????????? ???????? ????????? ??
??????????? ??????? ?? 2 ? ??????? Arabidopsis
thaliana
15Lebedeva GV, Belyaeva NE, Demin OV, Riznichenko
GYu, Rubin AB (2002) Kinetic model of primary
photosynthetic processes in chloroplasts.
Description of the fast phase of chlorophyll
fluorescence induction under different light
intensities. Biophysics 47968-980
Belyaeva NE, Schmitt F-J, Steffen, R, Paschenko
VZ, Riznichenko G Yu, Chemeris YuK, Renger G, and
Rubin AB (2008) PS II model-based simulations of
single turnover flash-induced transients of
fluorescence yield monitored within the time
domain of 100 ns10 s on dark-adapted Chlorella
pyrenoidosa cells. Photosynth Res 98 105119
16Roelofs T.A., LeeC.-H., Holzwarth A.R. Biophys.
J. 1992. V. 61. P. 1147-1163. Global target
analysis of picosecond chlorophyll fluorescence
kinetic from pea chloroplasts . Leibl W., Breton
J., Deprez J., Trissl H.-W. Photosynth. Res.
1989. V. 22. P. 257-275. Photoelectric study on
the kinetics of trapping and charge stabilization
in oriented PS II membranes. Schatz G.H., Brock
H., Holzwarth A.R. Biophys. J. 1988. V. 54. P.
397-405. Kinetic and energetic model for the
primary processes in photosystem II.
Renger, G., Eckert, H.-J., Bergmann, A.,
Bernarding, J., Liu, B., Napiwotzki, A.,
Reifarth, F., and Eichler, H. J. (1995)
Fluorescence and spectroscopic studies on exciton
trapping and electron transfer in photosystem II
of higher plants, Aust. J. Plant Physiol. 22,
167-181.
Lazar D. // J. Theor. Biol. 2003. V. 220,
469-503. Chlorophyll a Fluorescence Rise Induced
by High Light Illumination of Dark-adapted Plant
Tissue Studied by Means of a Model of Photosystem
II and Considering Photosystem II
Heterogeneity. Xin-Guang Zhu, Govindjee, Neil
R.Baker, Eric deSturler, Donald R.Ort, Stephen P.
Long. Chlorophyll afluorescence induction
kinetics in leaves predicted from a model
describing each discrete step of excitation
energy and electron transfer associated with
Photosystem II. Planta (2005) 223114 133
Stirbet A., Govindjee, Strasser B.J., Strasser
R.J. // J. Theor. Biol. 1998. V. 193. 131-151.
Chlorophyll a fluorescence induction in higher
plants modeling and numerical simulation
Strasser R.J., Tsimilli-Michael M., Srivastava A.
// in G.C.Papageorgiou and Govindjee
(eds)Chlorophyll FluorescenceA Signature of
Photosynthesis. 2005. Analysis of the
Chlorophyll a Fluorescence Transient
1. ???????? ?.?., ??????? ?.?., ????? ?.?.,
?????????? ?.?., ????? ?.?. ???????????? ??????
????????? ????????? ??????????? ? ????????????.
?????????, 2002, ?. 47, ???.6, ?.1044-1058. 2.
?.?. ???????, ?.?. ???????, ?.?. ??????????
?????????? ?????? ??2 ??? ??????? ??????????
?????? ?????????????, ?????????? ??????????
??????. ? ??. ??????????. ?????????.
???????????. 2007, ???.14,. ?.2, 335-346. 3. P.
Horton A.V. Ruban. Regulation of Photosystem II
Photosynth. Res. 1992, 34 375-385. 4. D. Bruce,
G. Samson, and C. Carpenter The Origins of
Nonphotochemical Quenching of Chlorophyll
Fluorescence in Photosynthesis. Direct Quenching
by P680 in Photosystem II Enriched Membranes at
Low pH Biochemistry, 1997, 36 (4), 749 -755
G. Schansker S. Z. Tótha and R. J. Strasser,
Bioch. Bioph. Acta (BBA) - Bioenergetics V. 1757,
7, 2006, P. 787-797 Dark recovery of the Chl a
fluorescence transient (OJIP) after light
adaptation The qT-component of non-photochemical
quenching is related to an activated photosystem
I acceptor side Natalia A. Krupenina, Alexander
A. Bulychev Action potential in a plant cell
lowers the light requirement for
non-photochemical energy-dependent quenching of
chlorophyll fluorescence. Biochimica et
Biophysica Acta 1767 (2007) 781788
Henning Hormann, Christian Neubauer and Ulrich
Schreiber On the relationship between chlorophyll
fluorescence quenching quantum yield of electron
transport in isolated thylakoids Photosynthesis
Research 40 93-106, 1994.
1 Lebedeva G.V., Belyaeva N.E., Demin O.V,
Riznichenko G.Yu., Rubin A.B. Biofizika, 2002,
v.47, n.6, 1044-1058. 2 Strasser R.J.,
Srivastava A., Govindgee. Photochem. and
Photobiol. 1995. 61, 32-42. 3 Bulychev A.A.,
Wredenberg W.J. Bioelectrochemistry. 2001. 54,
157-168.4 Lebedeva G.V., Belyaeva N.E.,
Riznichenko G.Yu., Rubin A.B., Demin O.V. Zh.
Fiz. Khim., 2000, v.74, 1897-1906.
17Mathematical model
Xi - concentration of i-th metabolite.
Electron carriers grouped in pigment protein
complexes. The time dependence of probabilities
of the ith states of the complex
The initial probabilities are pi(0)bi ,
i1,...l .
Concentrations of the mobile carrier in the
oxidized and reduced forms
Complex concentrations participating in transfer
step
ki - bimolecular rate constants.
18The rate constants
Equilibrium constants of oxidation-reduction
reactions
?Em is the difference of midpoint redox
potentials.
k(??)exp(-??????/(RT/F))?k k(??)exp((1-?)????
?/(RT/F))?k
?? -dependence of kinetic constants
?i indicates the contribution of each
electrogenic step to ?? generation, ? - the part
of the membrane potential, which influences the
rate constant of the direct reaction (k).
Time dependence of ??
(?m/F)?(d(??)/dt) V(qlumen) V(qstroma )
?m is the apportioned capacity of the thylakoid
membrane, F is Faraday constant, qlumen(stroma) -
the lumenal (stromal) charge .
The fluorescence yield
19Consumption of the transmembrane electrochemical
potential
To describe the ATP synthesis we used the
expression based on the minimal kinetic scheme of
ATP synthesis-hydrolysis reaction
Where ?F???/RT .
The dependence of the proton leakage on the
potential was considered according to the
mechanism of ion transfer trough the three
barrier channel
The similar expression was used to describe K
transfer