Title: Teaching Statistical Concepts with Simulated Data
1Teaching Statistical Concepts with Simulated Data
- Andrej Blejec
- National Institute of Biology andUniversity of
Ljubljana - Ljubljana, Slovenia
- andrej.blejec_at_nib.si
2Kinds of data
- real life data
- invented data
- simulated data
3Real life data
- interesting for students
- need subject matter knowledge to interpret
statistical results - oversimplified problems
- complex problems
- unclear relevance of statistical results
4Invented data
- a collection of data, no story
- useful mostly for calculation drill
- no possible interpretation of results
- uninteresting for students
5Simulated data
- sampled from known distribution
- composed according to prespecified modele.g.
Y a b X e, with known distribution of X
and e - known statistical propertiese.g. mean, variance,
regression coefficient - analysis results can be compared to true values
6Goals of teaching statistics
- interest for statistics
- understanding of statistical methods
- skills in use of statistics
- experiences in analyzing data
- other ( insert your own ) ___________
7(No Transcript)
8Absorption spectrum
9(No Transcript)
10(No Transcript)
11(No Transcript)
12(No Transcript)
13(No Transcript)
14(No Transcript)
15(No Transcript)
16(No Transcript)
17(No Transcript)
18(No Transcript)
19(No Transcript)
20(No Transcript)
21(No Transcript)
22Least squares estimate of the mean
23Mean squared deviations
24Mean squared deviations
25Mean squared deviations
26Mean squared deviations
27Mean squared deviations
28Mean squared deviations
29Mean squared deviations
30Mean squared deviations
31Mean squared deviations
32Mean squared deviations
33Mean squared deviations
34Mean squared deviations
35Mean squared deviations
36(No Transcript)
37Mean squared deviations
38Mean squared deviations
39Mean squared deviations
40Mean squared deviations
41Mean squared deviations
42Mean squared deviations
43Mean squared deviations
44Mean squared deviations
45Mean squared deviations
46Mean squared deviations
47Mean squared deviations
48True mean value µ
LS estimate
Mean squared deviations
49Maximum likelihood estimation of the mean
50(No Transcript)
51(No Transcript)
52(No Transcript)
53(No Transcript)
54(No Transcript)
55(No Transcript)
56(No Transcript)
57(No Transcript)
58(No Transcript)
59(No Transcript)
60(No Transcript)
61(No Transcript)
62(No Transcript)
63(No Transcript)
64(No Transcript)
65(No Transcript)
66(No Transcript)
67(No Transcript)
68(No Transcript)
69(No Transcript)
70(No Transcript)
71(No Transcript)
72(No Transcript)
73(No Transcript)
74(No Transcript)
75(No Transcript)
76(No Transcript)
77(No Transcript)
78(No Transcript)
79(No Transcript)
80(No Transcript)
81(No Transcript)
82ML estimate
True mean value µ
83(No Transcript)
84(No Transcript)
85(No Transcript)
86(No Transcript)
87(No Transcript)
88Maximum likelihood estimate of standard deviation
89(No Transcript)
90(No Transcript)
91(No Transcript)
92(No Transcript)
93(No Transcript)
94(No Transcript)
95(No Transcript)
96(No Transcript)
97(No Transcript)
98(No Transcript)
99(No Transcript)
100(No Transcript)
101(No Transcript)
102(No Transcript)
103(No Transcript)
104(No Transcript)
105(No Transcript)
106(No Transcript)
107(No Transcript)
108(No Transcript)
109(No Transcript)
110(No Transcript)
111(No Transcript)
112(No Transcript)
113(No Transcript)
114(No Transcript)
115(No Transcript)
116(No Transcript)
117(No Transcript)
118(No Transcript)
119ML estimate
True standard deviation s
120Hypothesis testingsignificance
121Hypothesis testingsignificance
or rather a surprise ?
122(No Transcript)
123(No Transcript)
124(No Transcript)
125(No Transcript)
126(No Transcript)
127(No Transcript)
128(No Transcript)
129(No Transcript)
130(No Transcript)
131(No Transcript)
132Confidence intervals
133Weldon, K.L. Statistics A Conceptual Approach..
Prentice-Hall. New York. 1986
134(No Transcript)
135(No Transcript)
136(No Transcript)
137(No Transcript)
138(No Transcript)
139(No Transcript)
140(No Transcript)
141(No Transcript)
142(No Transcript)
143(No Transcript)
144(No Transcript)
145(No Transcript)
146(No Transcript)
147(No Transcript)
148(No Transcript)
149(No Transcript)
150(No Transcript)
151Bad sampling implies bias
152Bias due to leave max out
153Confidence intervals for variance
- Biased and unbiased estimators
154(No Transcript)
155(No Transcript)
156(No Transcript)
157(No Transcript)
158(No Transcript)
159(No Transcript)
160(No Transcript)
161(No Transcript)
162(No Transcript)
163Confidence intervals for variancewhat if
assumptions are not met?
- Case of asymetric parent population
164(No Transcript)
165(No Transcript)
166(No Transcript)
167(No Transcript)
168(No Transcript)
169(No Transcript)
170(No Transcript)
171(No Transcript)
172Confidence band in linear regression
173(No Transcript)
174(No Transcript)
175(No Transcript)
176Coefficient of determination
177(No Transcript)
178(No Transcript)
179(No Transcript)
180(No Transcript)
181(No Transcript)
182(No Transcript)
183(No Transcript)
184(No Transcript)
185Final remarks
- Graphically supported simulations can - to some
extent - replace the proofs, usually not
understandable to non-mathematics majors. Maybe
they are the answer to some questions - "If an audience is not convinced by proof, why do
proof? (Moore, 1996) - Do students need to know the theory or do they
need to understand the concept? (J Brown and I
David, ICOTS8, 2010)
186- Simulated data have to be combined with real life
data and projects - Simulated data can serve as pure and simple data
on which we can train our perception for
statistical results and learn what patterns and
properties in data can be revealed by applied
method - After such preparation students will be able to
interpret the real life and subject matter data
in all their complexity