Title: Diffuse Galactic ?-ray emission model
1Diffuse Galactic ?-ray emission model
Igor V. Moskalenko (Stanford) with S. Digel
(SLAC) T. Porter (UCSC) O. Reimer (Stanford)
A. W. Strong (MPE)
2Diffuse Galactic Gamma-ray Emission
- 80 of total Milky Way luminosity at HE !!!
- Tracer of CR (p, e-) interactions in the ISM
(p0,IC,bremss) - Study of CR species in distant locations (spectra
intensities) - CR acceleration (SNRs, pulsars etc.) and
propagation - Emission from local clouds ? local CR spectra
- CR variations, Solar modulation
- May contain signatures of exotic physics (dark
matter etc.) - Cosmology, SUSY, hints for accelerator
experiments - Background for point sources (positions, low
latitude sources)
- Besides
- Diffuse emission from other normal galaxies
(M31, LMC, SMC) - Cosmic rays in other galaxies !
- Foreground in studies of the extragalactic
diffuse emission - Extragalactic diffuse emission (blazars ?) may
contain signatures of exotic physics (dark
matter, BH evaporation etc.)
Calculation requires knowledge of CR (p,e)
spectra in the entire Galaxy
3Conventional model vs EGRET data
?0 IC Bremss EG
Conventional model consistent with local p,e
spectra exhibits the GeV excess a factor 2
We must have at least 2 diffuse emission models
with/without the excess
4a-f
4DC2 diffuse emission model
- galprop ID 6002029RB
- Based on
- Strong,Moskalenko,Reimer, 2004, ApJ 613,962
- Strong,Moskalenko,Reimer,Digel,Diehl, 2004, AA
422, L47 - Optimized to fit EGRET data (GeV excess CR
spectra) - Includes secondary electrons positrons
- Pulsar/SNR source distribution
- Gradient in X-factor (H2/CO)
- Improvements
- new HI, CO data (Digel)
- new interstellar radiation field (Porter)
- fine adjustments to reflect these new inputs
- Examples of model unconvolved and convolved with
EGRET PSF
5GeV excess Optimized/Reaccleration model
- Uses all sky and antiprotons gammas
- to fix the nucleon and electron spectra
- Uses antiprotons to fix
- the intensity of CR nucleons _at_ HE
- Uses gammas to adjust
- the nucleon spectrum at LE
- the intensity of the CR electrons
- (uses also synchrotron index)
- Uses EGRET data up to 100 GeV
antiprotons
Ek, GeV
protons
electrons
Strong etal 2004
x4
x1.8
Ek, GeV
Ek, GeV
6Secondary e are seen in ?-rays !
Lots of new effects !
electrons
Heliosphere e/e0.2
sec.
IC
positrons
brems
Improves an agreement at LE
7(No Transcript)
8Distribution of interstellar gas
- Neutral interstellar medium most of the
interstellar gas mass - 21-cm H I 2.6-mm CO (standing for H2)
- Differential rotation of the Milky Way plus
random motions, streaming, and internal velocity
dispersions is largely responsible for the
spectrum - This is the best but far from perfect
distance measure available
(25, 0)
CO
25
Dame et al. (1987)
G.C.
H I
Hartmann Burton (1997)
W. Keel
9New H2 maps (S.Digel)
10New HI maps (S.Digel)
11Interstellar Radiation Field
Local ISRF (PS05)
Old model
- Target for CR leptons (IC)
- Energy losses
Optical
IR
- Model components
- Geometrical disk, ring, halo, bar, triaxial
bulge, arms - 87 stellar types (main sequence), AGB exotics
- Dust silicate, graphite, PAH (5Ã… few ?m)
- Absorbed light gives mid-IR (small grains PAH)
and FIR (0.1-1 ?m grains)
PAH
Scatt.opt.
SMR00 PS05
R0
4 kpc
- Systematic errors
- Star distribution star counts
- Grain properties lab measurements
- Gas/dust proportion extinction curve
- Reasonable parameters
- Compare with ISRF data only at R?
12 kpc
16kpc
12Distribution of CR Sources Gradient in the CO/H2
CR distribution from diffuse gammas (Strong
Mattox 1996) SNR distribution (Case
Bhattacharya 1998)
Pulsar distribution Lorimer 2004
sun
XCON(H2)/WCO Histo This work, Strong et
al.04 ----- -Sodroski et al.95,97 1.9x1020
-Strong Mattox96 Z-1 Boselli et
al.02 Z-2.5 -Israel97,00, O/H0.04,0.07
dex/kpc
13Inner Galaxy region
Comparison with EGRET COMPTEL spectral data
Other regions demonstrate equally good agreement
14Model comparison with data
- Convolution with EGRET PSF
- Important below 1 GeV
- A large effect at low energies especially in
latitude affecting the overall spectral shape - Convolution itself is model dependent -depends on
spectrum, not fully accounted for -
15Effect of Convolution 70-100 MeV
Longitude profile blt5?
Unconvolved Convolved
16Effect of Convolution 70-100 MeV
Latitude profile llt30?
Unconvolved Convolved
17Effect of Convolution 0.5-1 GeV
Longitude profile blt5?
Unconvolved Convolved
18Effect of Convolution 0.5-1 GeV
Latitude profile llt30?
Unconvolved Convolved
191-2 GeV
1000 2000 MeV
Convolution effect is negligible
20Effect of De-Convolution Spectrum llt30? blt5?
Convolved data De-convolved
NB here the spatial convolution correction is
applied to the DATA based on the model. Hence the
DATA changes, not the model (procedure
appropriate for spectra)