By Tariq Bashir Ahmad - PowerPoint PPT Presentation

1 / 23
About This Presentation
Title:

By Tariq Bashir Ahmad

Description:

Title: PowerPoint Presentation Author: tbashir Last modified by: tbashir Created Date: 5/2/2006 4:41:58 PM Document presentation format: On-screen Show – PowerPoint PPT presentation

Number of Views:122
Avg rating:3.0/5.0
Slides: 24
Provided by: tba102
Learn more at: http://www.ecs.umass.edu
Category:

less

Transcript and Presenter's Notes

Title: By Tariq Bashir Ahmad


1
Taylor Expansion Diagrams (TED)
  • By Tariq Bashir Ahmad

Adapted from the paper M. Ciesielski, P. Kalla,
Z. Zeng, B. Rouzeyre,Taylor Expansion
DiagramsA Compact Canonical Representation for
Symbolic Verification, in DATE, 2002.
2
Presentation Structure
  • Motivation RTL verification
  • Background
  • BDD (binary), BMD (word-level)
  • New canonical representation TED
  • Construction and manipulation
  • Properties
  • Applications

3
Motivation RTL Verification
  • Complex RTL designs
  • Data flow and control
  • Arithmetic and Boolean
  • Equivalence verification
  • Need representation that can handle
    arithmetic/Boolean
  • Efficient, compact
  • Canonical

4
Levels of Abstraction
We can design at a higher level of abstraction,
Can we verify at a higher level of abstraction ?
5
Common Representations
  • Boolean functions ( f B ? B )
  • Truth table, Karnaugh map
  • SoP, PoS etc.
  • Binary Decision diagrams (BDD)
  • Arithmetic functions ( f B ? Int )
  • Binary Moment Diagrams (BMD)
  • Need more abstract representation for arithmetic
    functions (f Int ? Int )

6
Binary Decision Diagrams (BDD)
  • Based on recursive Shannon expansion f
    x fx x fx
  • where fx f(x1), fxf(x0)
  • Compact data structure for Boolean logic
  • Canonical representation
  • reduced ordered BDDs (ROBDD)
  • Essential for verification
  • equivalence checking, satisfiability (SAT)

7
Application to Verification
  • Canonicity equivalence checking of logic circuits

F abc abc abc
G (ab)c
?
  • Limitations
  • Require bit-level expansion of word-level
    variables
  • Size explosion for some functions (arithmetic)

8
Binary Moment Diagrams (BMD)
  • Devised for word-level, arithmetic operations
  • Based on modified Shannon expansion (pos. Davio)
  • f x fx x fx x fx (1-x) fx
  • fx x (fx - fx ) fx x f?x
  • where fx fx0 is zero moment
  • f? x (fx - fx ) is first moment
    (derivative)

9
BMD Example
  • Efficiently models word-level operators

X Y X2x1x0 y2y1y0 0 1 1 1 0 1 8
X Y X2x1x0 . y2y1y0 0 1 1 . 1 0 1 15
  • Limitation requires bit-level representation of
    a word

10
Symbolic Representation
  • Why expand words into bits? Can we do better?
  • Abstract words into symbolic variables

11
Taylor Expansion Diagram(TED)
  • F arithmetic function (F Int ? Int )
  • Treat F as a continuous function
  • Taylor Expansion (around x0)
  • F(x) F(0) x F(0) ½ x2 F(0)
  • Notation
  • F0(x) F(x0) 0-child - - - - - -
  • F1(x) F(x0) 1-child ----------
  • F2(x) ½ F(x0) 2-child
  • So

F(x) F0(x) x F1(x) x2 F2(x)
12
Construction of TED example
F A2B 2C 3 with order AltBltC
G 2C 3
(without normalization)
13
Few more examples
14
TED Reduction Rules
  • 1. Eliminate redundant nodes
  • Nodes with all edges ? 0
  • Nodes with only constant term

f 0 a2 0 a g(b) g(b)
2. Merge isomorphic subgraphs
(A2 5A 6)(B C)
15
TED Normalization
  • TED can be normalized
  • weights of edges of a given node must be
    relatively prime (to allow sharing isomorphic
    graphs)

2A 2B 6
2(A B 3)
16
TED Composition
  • Recursive composition of nodes, starting at the
    top

  • Operation depends on relative order of variables
    x, y
  • if x y, then z x, and
  • h(x) f(x) OP g(x)
  • f0(x) OP g0(y) x f1(x) OP g1(y)
    x2 f2(x) OP g2,
  • if x gt y, then z x, and
  • h(x) f0(x) OP g(y) x f1(x) OP g(y)
    x2 f2(x) OP g,
  • else .

17
COMPOSE Operator ADD/SUB
  • Nodes indexed by same variable
  • Nodes indexed by different variable (x gt y)

18
Compose Operation Example
B


C
2AB2C
19
Comparison of BDD and TED
Property BDD TED
Decomposition Shannon Taylor
Composition And/OR Multiply/Add
Canonicity Yes Yes
Canonicity Reduction rules Reduction rules normalization
Satisfiability Yes No
20
TED for Arithmetic Circuits
  • Arithmetic circuits contain related word-level
    (A, B) and Boolean (ak, bk) variables
  • A an-1, , ak , ,a0 2(k1)Ahi 2k
    ak Alo

21
Application to RTL Verification
  • Equivalence checking with TEDs
  • interacting word-level and Boolean variables

F2 (1-s2) (A2-B2) s2 D s2 ak ? bk 1 - ak
ak bk
F1 s1(AB)(A-B) (1-s1)D s1 (ak gt bk) ak
(1-bk)
A Ahi,ak,Alo, B Bhi,bk,Blo
22
Result RTL Verification
  • Related word-level and Boolean variables
  • F1 s1(AB)(A-B) (1-s1)D
  • s1 (ak gt bk) ak (1-bk)

F1 (ak-akbk) (2k1Ahi 2kak Alo)2 -
(2k1Bhi 2k bk Blo)2 (1ak akbk)
D
23
Questions?
Write a Comment
User Comments (0)
About PowerShow.com