1.3 - PowerPoint PPT Presentation

1 / 60
About This Presentation
Title:

1.3

Description:

1.3 Properties of Real Numbers – PowerPoint PPT presentation

Number of Views:41
Avg rating:3.0/5.0
Slides: 61
Provided by: Jaco132
Category:

less

Transcript and Presenter's Notes

Title: 1.3


1
1.3 Properties of Real Numbers

2
1.3 Properties of Real Numbers
  • Real Numbers

3
1.3 Properties of Real Numbers
  • Real Numbers (R)

4
1.3 Properties of Real Numbers
  • Real Numbers (R)

5
1.3 Properties of Real Numbers
  • Real Numbers (R)
  • Rational

6
1.3 Properties of Real Numbers
  • Real Numbers (R)
  • Rational (?)

7
1.3 Properties of Real Numbers
  • Real Numbers (R)
  • (Q) Rational (?)

8
1.3 Properties of Real Numbers
  • Real Numbers (R)
  • (Q) Rational (?)

9
1.3 Properties of Real Numbers
  • Real Numbers (R)
  • (Q) Rational (?)
  • Integers

10
1.3 Properties of Real Numbers
  • Real Numbers (R)
  • (Q) Rational (?)
  • Integers (-6)

11
1.3 Properties of Real Numbers
  • Real Numbers (R)
  • (Q) Rational (?)
  • (Z) Integers (-6)

12
1.3 Properties of Real Numbers
  • Real Numbers (R)
  • (Q) Rational (?)
  • (Z) Integers (-6)

13
1.3 Properties of Real Numbers
  • Real Numbers (R)
  • (Q) Rational (?)
  • (Z) Integers (-6)
  • Whole s

14
1.3 Properties of Real Numbers
  • Real Numbers (R)
  • (Q) Rational (?)
  • (Z) Integers (-6)
  • Whole s (0)

15
1.3 Properties of Real Numbers
  • Real Numbers (R)
  • (Q) Rational (?)
  • (Z) Integers (-6)
  • (W) Whole s (0)

16
1.3 Properties of Real Numbers
  • Real Numbers (R)
  • (Q) Rational (?)
  • (Z) Integers (-6)
  • (W) Whole s (0)

17
1.3 Properties of Real Numbers
  • Real Numbers (R)
  • (Q) Rational (?)
  • (Z) Integers (-6)
  • (W) Whole s (0)
  • Natural s

18
1.3 Properties of Real Numbers
  • Real Numbers (R)
  • (Q) Rational (?)
  • (Z) Integers (-6)
  • (W) Whole s (0)
  • Natural s (7)

19
1.3 Properties of Real Numbers
  • Real Numbers (R)
  • (Q) Rational (?)
  • (Z) Integers (-6)
  • (W) Whole s (0)
  • (N) Natural s (7)

20
1.3 Properties of Real Numbers
  • Real Numbers (R)
  • (Q) Rational (?)
  • (Z) Integers (-6)
  • (W) Whole s (0)
  • (N) Natural s (1)

21
1.3 Properties of Real Numbers
  • Real Numbers (R)
  • (Q) Rational (?) Irrational
  • (Z) Integers (-6)
  • (W) Whole s (0)
  • (N) Natural s (1)

22
1.3 Properties of Real Numbers
  • Real Numbers (R)
  • (Q) Rational (?) Irrational v 5
  • (Z) Integers (-6)
  • (W) Whole s (0)
  • (N) Natural s (1)

23
1.3 Properties of Real Numbers
  • Real Numbers (R)
  • (Q) Rational (?) (I) Irrational v 5
  • (Z) Integers (-6)
  • (W) Whole s (0)
  • (N) Natural s (1)

24
Example 1

25
Example 1
  • Name the sets of numbers to which each apply.

26
Example 1
  • Name the sets of numbers to which each apply.

27
Example 1
  • Name the sets of numbers to which each apply.

28
Example 1
  • Name the sets of numbers to which each apply.
  • (a) v 16

29
Example 1
  • Name the sets of numbers to which each apply.
  • (a) v 16 4

30
Example 1
  • Name the sets of numbers to which each apply.
  • (a) v 16 4 - N

31
Example 1
  • Name the sets of numbers to which each apply.
  • (a) v 16 4 - N, W

32
Example 1
  • Name the sets of numbers to which each apply.
  • (a) v 16 4 - N, W, Z

33
Example 1
  • Name the sets of numbers to which each apply.
  • (a) v 16 4 - N, W, Z, Q

34
Example 1
  • Name the sets of numbers to which each apply.
  • (a) v 16 4 - N, W, Z, Q, R

35
Example 1
  • Name the sets of numbers to which each apply.
  • v 16 4 - N, W, Z, Q, R
  • -185

36
Example 1
  • Name the sets of numbers to which each apply.
  • v 16 4 - N, W, Z, Q, R
  • -185 - Z

37
Example 1
  • Name the sets of numbers to which each apply.
  • v 16 4 - N, W, Z, Q, R
  • -185 - Z, Q

38
Example 1
  • Name the sets of numbers to which each apply.
  • v 16 4 - N, W, Z, Q, R
  • -185 - Z, Q, R

39
Example 1
  • Name the sets of numbers to which each apply.
  • v 16 4 - N, W, Z, Q, R
  • -185 - Z, Q, R
  • v 20

40
Example 1
  • Name the sets of numbers to which each apply.
  • v 16 4 - N, W, Z, Q, R
  • -185 - Z, Q, R
  • v 20 - I, R

41
Example 1
  • Name the sets of numbers to which each apply.
  • v 16 4 - N, W, Z, Q, R
  • -185 - Z, Q, R
  • v 20 - I, R
  • (d) -?

42
Example 1
  • Name the sets of numbers to which each apply.
  • v 16 4 - N, W, Z, Q, R
  • -185 - Z, Q, R
  • v 20 - I, R
  • (d) -? - Q

43
Example 1
  • Name the sets of numbers to which each apply.
  • v 16 4 - N, W, Z, Q, R
  • -185 - Z, Q, R
  • v 20 - I, R
  • (d) -? - Q, R

44
Example 1
  • Name the sets of numbers to which each apply.
  • v 16 4 - N, W, Z, Q, R
  • -185 - Z, Q, R
  • v 20 - I, R
  • (d) -? - Q, R
  • __
  • (e) 0.45

45
Example 1
  • Name the sets of numbers to which each apply.
  • v 16 4 - N, W, Z, Q, R
  • -185 - Z, Q, R
  • v 20 - I, R
  • (d) -? - Q, R
  • __
  • (e) 0.45 - Q

46
Example 1
  • Name the sets of numbers to which each apply.
  • v 16 4 - N, W, Z, Q, R
  • -185 - Z, Q, R
  • v 20 - I, R
  • (d) -? - Q, R
  • __
  • (e) 0.45 - Q, R

47
Properties of Real Numbers
Property Addition Multiplication
Commutative a b b a ab ba
Associative (ab)c a(bc) (ab)c a(bc)
Identity a0 a 0a a1 a 1a
Inverse a(-a) 0 -aa a1 1 1a a a
Distributive a(bc)abac and (bc)abaca a(bc)abac and (bc)abaca
48
Example 2
49
Example 2
  • Name the property used in each equation.

50
Example 2
  • Name the property used in each equation.
  • (a) (5 7) 8 8 (5 7)

51
Example 2
  • Name the property used in each equation.
  • (a) (5 7) 8 8 (5 7)
  • Commutative Addition

52
Example 2
  • Name the property used in each equation.
  • (a) (5 7) 8 8 (5 7)
  • Commutative Addition
  • (b) 3(4x) (34)x

53
Example 2
  • Name the property used in each equation.
  • (a) (5 7) 8 8 (5 7)
  • Commutative Addition
  • (b) 3(4x) (34)x
  • Associative Multiplication

54
Example 3
  • What is the additive and multiplicative inverse
    for -1¾?

55
Example 3
  • What is the additive and multiplicative inverse
    for -1¾?
  • Additive -1¾

56
Example 3
  • What is the additive and multiplicative inverse
    for -1¾?
  • Additive -1¾ 0

57
Example 3
  • What is the additive and multiplicative inverse
    for -1¾?
  • Additive -1¾ 1¾ 0

58
Example 3
  • What is the additive and multiplicative inverse
    for -1¾?
  • Additive -1¾ 1¾ 0
  • Multiplicative -1¾

59
Example 3
  • What is the additive and multiplicative inverse
    for -1¾?
  • Additive -1¾ 1¾ 0
  • Multiplicative -1¾ 1

60
Example 3
  • What is the additive and multiplicative inverse
    for -1¾?
  • Additive -1¾ 1¾ 0
  • Multiplicative (-1¾)(-4/7) 1
Write a Comment
User Comments (0)
About PowerShow.com