Title: Prof. Dr. Jaroslav Ram
1Fuzzy sets I
2Content
- Basic definitions
- Examples
- Operations with fuzzy sets (FS)
- t-norms and t-conorms
- Aggregation operators
- Extended operations with FS
- Fuzzy numbers Convex fuzzy set, fuzzy interval,
fuzzy number (FN), triangular FN, trapezoidal FN,
L-R fuzzy numbers
3Basic definitions
- Set - a collection well understood and
distinguishable objects of our concept or our
thinking about the collection. - Fuzzy set - a collection of objects in connection
with expression of uncertainty of the property
characterizing the objects by grades from
interval between 0 and 1.
4Fuzzy set
- X - universe (of discourse) set of objects
- ?A X ? 0,1 - membership function
- (x, ?A(x)) x ?X - fuzzy set of X (FS)
5Examples
- Feasible daily car production
- Young man age
- Number around 8
6Example1. Feasible car production per day
X 3, 4, 5, 6, 7, 8, 9 - universe
(3 0), (4 0), (5 0,1), (6 0,5), (7 1),
(8 0,8), (9 0)
7Example 2. Young man age
X 0, 100 - universe (interval)
Approximation of empirical evaluations
(points) 20 respondents have been asked to
evaluate the membership grade
8Example 3.Number around eight
X (0, ?) - universe (interval)
9Crisp set
- Crisp set A of X fuzzy set with a special
membership function ?A X ? 0,1 -
characteristic function - Crisp set can be uniquely identified with a set
- (non-fuzzy) set A is in fact a (fuzzy) crisp set
10Support, height, normal fuzzy set
- Support of fuzzy set , supp( ) x?X ?A(x)
gt 0 - support is a set (crisp set)!
- Height of fuzzy set , hgt( ) Sup?A(x)
x?X - Fuzzy set is normal (normalized), if there
exists - x0?X with ?A(x0) 1
- Ex. Support of from Example 1 supp( )
5, 6, 7, 8 - hgt( ) ?A(8) 1 ? is normal!
-
11?-cut (?- level set)
? ?0,1, - fuzzy set, A? x ?X?A(x)??
- ?-cut of
- convex FS, if A? is convex set (interval) for
all ? ?0,1 !!!
12Operations with fuzzy sets
- ?(X) -Fuzzy power set set of all fuzzy sets of
X ??(X) - ? ?A(x) ?B(x) for all x ?X - identity
- ? ?A(x) ? ?B(x) for all x ?X -
inclusion -
- transitivity
13- Union and Intersection of fuzzy sets
??(X)
? ?A?B(x) Max?A(x), ?B(x) - union
? ?A?B(x) Min?A(x), ?B(x)- intersection
Properties Commutativity, Associativity,
Distributivity,
14Example 4.
(3 0), (4 0), (5 0,1), (6 0,5), (7 1),
(8 0,8), (9 0)
(3 1), (4 1), (5 0,9), (6 0,8), (7 0,4),
(8 0,1), (9 0)
15- Complement, Cartesian product
??(X)
? ?CA(x) 1 - ?A(x) - complement of
??(Y)
??(X) ,
? ?A?B(x,y) Min?A(x), ?B(y)
- Cartesian product (CP) CP is a fuzzy set of
X?Y ! Extension to more parts possible e.g. X,
Y, Z,
16- Complementarity conditions
??(X)
1. ? ?
2. ? X
Min and Max do not satisfy 1., 2. ! (only for
crisp sets) later on bold intersection and
union will satisfy the complementarity
17Examples
18- Extended operations with FS
?(X)
Intersection ? and Union ? operations on
Realization by Min and Max operators generalized
by t-norms and t-conorms
19A function T 0,1 ? 0,1 ? 0,1 is called
t-norm if it satisfies the following
properties (axioms) T1 T(a,1) a ?a ? 0,1
- 1 is a neutral element T2 T(a,b) T(b,a)
?a,b ? 0,1 - commutativity T3 T(a,T(b,c)
) T(T(a,b),c) ?a,b,c ? 0,1 -
associativity T4 T(a,b) ? T(c,d) whenever a ? c
, b ? d - monotnicity
20A function S 0,1 ? 0,1 ? 0,1 is called
t-conorm if it satisfies the following
axioms S1 S(a,0) a ?a ? 0,1 - 0 is a
neutral element S2 S(a,b) S(b,a) ?a,b ? 0,1
- commutativity S3 S(a,S(b,c))
S(S(a,b),c) ?a,b,c ? 0,1 - associativity S4 S(a
,b) ? S(c,d) whenever a ? c , b ? d -
monotnicity
21Examples of t-norms and t-conorms 1
- 1. TM Min, SM Max - minimum and maximum
- 2.
- - drastic product, drastic sum
- Property
- TW(a,b) ? T(a,b) ? TM(a,b) , SM(a,b) ? S(a,b) ?
SW(a,b) - for every t-norm T, resp. t-conorm S, and ?a,b ?
0,1
22Examples of t-norms and t-conorms 2
- 3. TP(a,b) a.b SP (a,b) ab - a.b - product
and probabilistic sum - 4. TL(a,b) Max0,ab - 1 SL (a,b) Min1,ab
- - Lukasiewicz t-norm and t-conorm (satisfies
complematarity!) - (bounded difference, bounded sum)
- Also ?b - bold intersection, ?b - bold union
- Property
- T(a,b) 1 - T(1-a,1-b) , S(a,b) 1 -
S(1-a,1-b) - If T is a t-norm then T is a t-conorm ( T and
T are dual ) - If S is a t-conorm then S is a t-norm ( S and
S are dual )
23Examples of t-norms and t-conorms 3
- 5. q? 1,?)
- ?a,b ? 0,1
- Yagers t-norm and t-conorm
- 6. Einstein, Hamacher, Dubois-Prade product and
sum etc. - Property
- If q 1, then Tq, (Sq) is Lukasiewicz t-norm
(t-conorm) - If q ?, then Tq, (Sq) is Min (Max)
24- Extended Union and Intersection of fuzzy sets
??(X), T - t-norm, S - t-conorm
? ?A?sB(x) S(?A(x), ?B(x)) - S-union
? ?A?TB(x) T(?A(x), ?B(x)) -T-intersection
Properties Commutativity, Associativity?,
25A function G 0,1 ? 0,1 ? 0,1 is called
aggregation operator if it satisfies the
following properties (axioms) A1 G(0,0) 0 -
boundary condition 1 A2 G(1,1) 1 - boundary
condition 2 A3 G(a,b) ? G(c,d) whenever a ? c
, b ? d - monotnicity NO commutativity or
associativity conditions! All t-norms and
t-conorms are aggregation operators! May be
extended to more parts, e.g. a,b,c,
26- Compensative operators (CO) 1
CO Aggregation operator G satisfying Min(a,b) ?
G(a,b) ? Max(a,b) Example 1. Averages 1 G(a,b)
(a b)/2 - arithmetic mean (average) 2
G(a,b) - geometric mean
3 G(a,b) - harmonic mean
S
Max
G
Min
T
Extension to more elements possible!
27- Examples. Compensatory operators
- 1 TW(a,b) ?.Min(a,b) (1- ?) -
fuzzy and - SW(a,b) ?.Max(a,b) (1- ?) -
fuzzy or (by Werners) - 2 ATS(a,b) ?.T(a,b) (1 - ?).S(a,b) -
COs by PTS(a,b) T(a,b)? . S(a,b)1-?
Zimmermann and Zysno - T - t-norm, S - t-conorm, ? ? 0,1 -
compensative parameter - CO compensate trade-offs between conflicting
evaluations - extension to more elements possible
28Fuzzy numbers
- fuzzy set of R (real numbers) - convex - normal
(there exists x0 ? R with ?A(x0) 1) - A? is
closed interval for all ? ?0,1
Then is called fuzzy interval Moreover if
there exists only one x0 ? R with ?A(x0) 1 then
is called fuzzy number
29Positive and negative fuzzy numbers
- fuzzy number is - positive if ?A(x) 0 for all
x ? 0 - negative if ?A(x) 0 for all x ? 0
0
30Example 5. Fuzzy number About three
31Example 6. Triangular fuzzy number About three
spread
mean value
32L-R fuzzy intervals
- L, R 0,?) ? 0,1 - non-increasing,
non-constant functions - shape functions - L(0) R(0) 1, m, n, ? gt 0, ? gt 0 - real
numbers - - fuzzy interval of L-R-type if
- fuzzy number of L-R-type if m n, L, R -
decreasing functions
33Example 7. L-R fuzzy number Around eight
34Example 8. L-R fuzzy number About eight
35Example 9. L-R fuzzy interval
36Example 10. Fuzzy intervals
37Summary
- Basic definitions set, fuzzy set, membership
function, crisp set, support, height, normal
fuzzy set, ?-level set - Examples daily production, young man age, around
8 - Operations with fuzzy sets fuzzy power set,
union, intersection, complement, cartesian
product - Extended operations with fuzzy sets t-norms and
t-conorms, compensative operators - Fuzzy numbers Convex fuzzy set, fuzzy interval,
fuzzy number (FN), triangular FN, trapezoidal FN,
L-R fuzzy numbers
38References
- 1 J. Ramík, M. Vlach Generalized concavity in
fuzzy optimization and decision analysis. Kluwer
Academic Publ. Boston, Dordrecht, London, 2001. - 2 H.-J. Zimmermann Fuzzy set theory and its
applications. Kluwer Academic Publ. Boston,
Dordrecht, London, 1996. - 3 H. Rommelfanger Fuzzy Decision Support -
Systeme. Springer - Verlag, Berlin Heidelberg,
New York, 1994. - 4 H. Rommelfanger, S. Eickemeier
Entscheidungstheorie - Klassische Konzepte und
Fuzzy - Erweiterungen, Springer - Verlag, Berlin
Heidelberg, New York, 2002.