Prof. Dr. Jaroslav Ram - PowerPoint PPT Presentation

1 / 38
About This Presentation
Title:

Prof. Dr. Jaroslav Ram

Description:

Fuzzy sets I Prof. Dr. Jaroslav Ram k Content Basic definitions Examples Operations with fuzzy sets (FS) t-norms and t-conorms Aggregation operators Extended ... – PowerPoint PPT presentation

Number of Views:69
Avg rating:3.0/5.0
Slides: 39
Provided by: rami77
Category:

less

Transcript and Presenter's Notes

Title: Prof. Dr. Jaroslav Ram


1
Fuzzy sets I
  • Prof. Dr. Jaroslav Ramík

2
Content
  • Basic definitions
  • Examples
  • Operations with fuzzy sets (FS)
  • t-norms and t-conorms
  • Aggregation operators
  • Extended operations with FS
  • Fuzzy numbers Convex fuzzy set, fuzzy interval,
    fuzzy number (FN), triangular FN, trapezoidal FN,
    L-R fuzzy numbers

3
Basic definitions
  • Set - a collection well understood and
    distinguishable objects of our concept or our
    thinking about the collection.
  • Fuzzy set - a collection of objects in connection
    with expression of uncertainty of the property
    characterizing the objects by grades from
    interval between 0 and 1.

4
Fuzzy set
  • X - universe (of discourse) set of objects
  • ?A X ? 0,1 - membership function
  • (x, ?A(x)) x ?X - fuzzy set of X (FS)

5
Examples
  • Feasible daily car production
  • Young man age
  • Number around 8

6
Example1. Feasible car production per day
X 3, 4, 5, 6, 7, 8, 9 - universe
(3 0), (4 0), (5 0,1), (6 0,5), (7 1),
(8 0,8), (9 0)
7
Example 2. Young man age
X 0, 100 - universe (interval)
Approximation of empirical evaluations
(points) 20 respondents have been asked to
evaluate the membership grade
8
Example 3.Number around eight
X (0, ?) - universe (interval)
9
Crisp set
  • Crisp set A of X fuzzy set with a special
    membership function ?A X ? 0,1 -
    characteristic function
  • Crisp set can be uniquely identified with a set
  • (non-fuzzy) set A is in fact a (fuzzy) crisp set

10
Support, height, normal fuzzy set
  • Support of fuzzy set , supp( ) x?X ?A(x)
    gt 0
  • support is a set (crisp set)!
  • Height of fuzzy set , hgt( ) Sup?A(x)
    x?X
  • Fuzzy set is normal (normalized), if there
    exists
  • x0?X with ?A(x0) 1
  • Ex. Support of from Example 1 supp( )
    5, 6, 7, 8
  • hgt( ) ?A(8) 1 ? is normal!

11
?-cut (?- level set)
? ?0,1, - fuzzy set, A? x ?X?A(x)??
- ?-cut of
- convex FS, if A? is convex set (interval) for
all ? ?0,1 !!!
12
Operations with fuzzy sets
  • ?(X) -Fuzzy power set set of all fuzzy sets of
    X ??(X)
  • ? ?A(x) ?B(x) for all x ?X - identity
  • ? ?A(x) ? ?B(x) for all x ?X -
    inclusion

  • - transitivity

13
  • Union and Intersection of fuzzy sets

??(X)
? ?A?B(x) Max?A(x), ?B(x) - union
? ?A?B(x) Min?A(x), ?B(x)- intersection
Properties Commutativity, Associativity,
Distributivity,
14
Example 4.
(3 0), (4 0), (5 0,1), (6 0,5), (7 1),
(8 0,8), (9 0)
(3 1), (4 1), (5 0,9), (6 0,8), (7 0,4),
(8 0,1), (9 0)
15
  • Complement, Cartesian product

??(X)
? ?CA(x) 1 - ?A(x) - complement of
??(Y)
??(X) ,
? ?A?B(x,y) Min?A(x), ?B(y)
- Cartesian product (CP) CP is a fuzzy set of
X?Y ! Extension to more parts possible e.g. X,
Y, Z,
16
  • Complementarity conditions

??(X)
1. ? ?
2. ? X
Min and Max do not satisfy 1., 2. ! (only for
crisp sets) later on bold intersection and
union will satisfy the complementarity
17
Examples
18
  • Extended operations with FS

?(X)
Intersection ? and Union ? operations on
Realization by Min and Max operators generalized
by t-norms and t-conorms
19
  • t-norms

A function T 0,1 ? 0,1 ? 0,1 is called
t-norm if it satisfies the following
properties (axioms) T1 T(a,1) a ?a ? 0,1
- 1 is a neutral element T2 T(a,b) T(b,a)
?a,b ? 0,1 - commutativity T3 T(a,T(b,c)
) T(T(a,b),c) ?a,b,c ? 0,1 -
associativity T4 T(a,b) ? T(c,d) whenever a ? c
, b ? d - monotnicity
20
  • t-conorms

A function S 0,1 ? 0,1 ? 0,1 is called
t-conorm if it satisfies the following
axioms S1 S(a,0) a ?a ? 0,1 - 0 is a
neutral element S2 S(a,b) S(b,a) ?a,b ? 0,1
- commutativity S3 S(a,S(b,c))
S(S(a,b),c) ?a,b,c ? 0,1 - associativity S4 S(a
,b) ? S(c,d) whenever a ? c , b ? d -
monotnicity
21
Examples of t-norms and t-conorms 1
  • 1. TM Min, SM Max - minimum and maximum
  • 2.
  • - drastic product, drastic sum
  • Property
  • TW(a,b) ? T(a,b) ? TM(a,b) , SM(a,b) ? S(a,b) ?
    SW(a,b)
  • for every t-norm T, resp. t-conorm S, and ?a,b ?
    0,1

22
Examples of t-norms and t-conorms 2
  • 3. TP(a,b) a.b SP (a,b) ab - a.b - product
    and probabilistic sum
  • 4. TL(a,b) Max0,ab - 1 SL (a,b) Min1,ab
  • - Lukasiewicz t-norm and t-conorm (satisfies
    complematarity!)
  • (bounded difference, bounded sum)
  • Also ?b - bold intersection, ?b - bold union
  • Property
  • T(a,b) 1 - T(1-a,1-b) , S(a,b) 1 -
    S(1-a,1-b)
  • If T is a t-norm then T is a t-conorm ( T and
    T are dual )
  • If S is a t-conorm then S is a t-norm ( S and
    S are dual )

23
Examples of t-norms and t-conorms 3
  • 5. q? 1,?)
  • ?a,b ? 0,1
  • Yagers t-norm and t-conorm
  • 6. Einstein, Hamacher, Dubois-Prade product and
    sum etc.
  • Property
  • If q 1, then Tq, (Sq) is Lukasiewicz t-norm
    (t-conorm)
  • If q ?, then Tq, (Sq) is Min (Max)

24
  • Extended Union and Intersection of fuzzy sets

??(X), T - t-norm, S - t-conorm
? ?A?sB(x) S(?A(x), ?B(x)) - S-union
? ?A?TB(x) T(?A(x), ?B(x)) -T-intersection
Properties Commutativity, Associativity?,
25
  • Aggregation operators

A function G 0,1 ? 0,1 ? 0,1 is called
aggregation operator if it satisfies the
following properties (axioms) A1 G(0,0) 0 -
boundary condition 1 A2 G(1,1) 1 - boundary
condition 2 A3 G(a,b) ? G(c,d) whenever a ? c
, b ? d - monotnicity NO commutativity or
associativity conditions! All t-norms and
t-conorms are aggregation operators! May be
extended to more parts, e.g. a,b,c,
26
  • Compensative operators (CO) 1

CO Aggregation operator G satisfying Min(a,b) ?
G(a,b) ? Max(a,b) Example 1. Averages 1 G(a,b)
(a b)/2 - arithmetic mean (average) 2
G(a,b) - geometric mean
3 G(a,b) - harmonic mean
S
Max
G
Min
T
Extension to more elements possible!
27
  • Compensative operators 2
  • Examples. Compensatory operators
  • 1 TW(a,b) ?.Min(a,b) (1- ?) -
    fuzzy and
  • SW(a,b) ?.Max(a,b) (1- ?) -
    fuzzy or (by Werners)
  • 2 ATS(a,b) ?.T(a,b) (1 - ?).S(a,b) -
    COs by PTS(a,b) T(a,b)? . S(a,b)1-?
    Zimmermann and Zysno
  • T - t-norm, S - t-conorm, ? ? 0,1 -
    compensative parameter
  • CO compensate trade-offs between conflicting
    evaluations
  • extension to more elements possible

28
Fuzzy numbers
- fuzzy set of R (real numbers) - convex - normal
(there exists x0 ? R with ?A(x0) 1) - A? is
closed interval for all ? ?0,1
Then is called fuzzy interval Moreover if
there exists only one x0 ? R with ?A(x0) 1 then
is called fuzzy number
29
Positive and negative fuzzy numbers
- fuzzy number is - positive if ?A(x) 0 for all
x ? 0 - negative if ?A(x) 0 for all x ? 0
0
30
Example 5. Fuzzy number About three
31
Example 6. Triangular fuzzy number About three
spread
mean value
32
L-R fuzzy intervals
  • L, R 0,?) ? 0,1 - non-increasing,
    non-constant functions - shape functions
  • L(0) R(0) 1, m, n, ? gt 0, ? gt 0 - real
    numbers
  • - fuzzy interval of L-R-type if
  • fuzzy number of L-R-type if m n, L, R -
    decreasing functions

33
Example 7. L-R fuzzy number Around eight
34
Example 8. L-R fuzzy number About eight
35
Example 9. L-R fuzzy interval
36
Example 10. Fuzzy intervals
37
Summary
  • Basic definitions set, fuzzy set, membership
    function, crisp set, support, height, normal
    fuzzy set, ?-level set
  • Examples daily production, young man age, around
    8
  • Operations with fuzzy sets fuzzy power set,
    union, intersection, complement, cartesian
    product
  • Extended operations with fuzzy sets t-norms and
    t-conorms, compensative operators
  • Fuzzy numbers Convex fuzzy set, fuzzy interval,
    fuzzy number (FN), triangular FN, trapezoidal FN,
    L-R fuzzy numbers

38
References
  • 1 J. Ramík, M. Vlach Generalized concavity in
    fuzzy optimization and decision analysis. Kluwer
    Academic Publ. Boston, Dordrecht, London, 2001.
  • 2 H.-J. Zimmermann Fuzzy set theory and its
    applications. Kluwer Academic Publ. Boston,
    Dordrecht, London, 1996.
  • 3 H. Rommelfanger Fuzzy Decision Support -
    Systeme. Springer - Verlag, Berlin Heidelberg,
    New York, 1994.
  • 4 H. Rommelfanger, S. Eickemeier
    Entscheidungstheorie - Klassische Konzepte und
    Fuzzy - Erweiterungen, Springer - Verlag, Berlin
    Heidelberg, New York, 2002.
Write a Comment
User Comments (0)
About PowerShow.com