Title: Climatological-scale science from sparse data
1Climatological-scale science from sparse data
Michael Steele Wendy Ermold Polar Science
Center / Applied Physics Laboratory / University
of Washington, Seattle WA USA
2Michael Steele Polar Science Center /
APL University of Washington
Example A study of Arctic Ocean surface warming
over the past 100 years
http//psc.apl.washington.edu
How much ocean warming?
3WOD05data distribution,colored by
Temperature
Earliest Year
50?N 90?N 0-10 m July, Aug, Sept
4- Data Handling details
- 1. ACQUIRE THE DATA
- The data were downloaded off the web as wrapped
ascii files - World Ocean Database, 2005
- http//www.nodc.noaa.gov/OC5/WOD05/pr_wod05.html
- 2. REFORMATING
- Data were reformatted into the following ascii
columns - Profile_ID latitude longitude depth
temperature salinity month year
Temperature
5Instrument Counts for some Arctic shelves
Drifting Buoy Data
mechanical bathythermograph data
ocean station data bottle, low res CTD
eXpendable bathythermograph data
6Temporal Bias
Raw data histograms
7SPATIAL BIAS
Example East Siberian eastern Laptev Seas
Raw Data
50km bin averaged
Mean SST 2.2 C
Mean SST 1.9 C
sparse COLD profiles
dense WARM profiles
Temperature (ºC)
8Fake trends
Year 1
Year 3
Year 2
data
cold
warmer
hot
Steady state ocean spatially biased
sampling ? fake warming trend!
9- The solution Multiple Regression
- T a b?x c?y d?PHC(x,y) e?year
spatial field
Anomalies are defined relative to the mean
spatial field over a given time period.
no intra-year predictor
10Long-term N/AO trends
Are these trends reflected in the SST data?
11(b) SST 1965-1995
No M.R. here just smoothed, 300 km binned trends
(c) SST 1930-1995
(d) OHC 1965-1995
SST trend
C per decade
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2
0.3 0.4 0.5
MJ/m2 per decade
OHC trend
-100 -80 -60 -40 -20 0 20 40
60 80 100
12SST anomalies using M.R.
(a) Beaufort-E
(b) Beaufort-W
(c) Bering
(d) ESSLaptev
Ice thickness (m)
(e) Kara
(f) Barents