Title: Quantum Statistics
1Chapter 7
2Boltzmann w/ Chemical Potential
Grand Canonical Ensemble
Reservoir, Heat Bath UR, NR, TR, mR
System Es, Ns, Ts, ms
Thermal and diffusive equilibrium TR Ts mR ms
3Boltzmann w/ Chemical Potential
Grand Canonical Ensemble
Reservoir, Heat Bath UR, NR, TR, mR
System Es, Ns, Ts, ms
Thermal and diffusive equilibrium TR Ts mR ms
4Carbon Monoxide Poisoning
DE 0.00 eV
O
O
Fe2
DE -0.70 eV
C
O
DE -0.85 eV
5Carbon Monoxide Poisoning
DE 0.00 eV
O
O
Fe2
DE -0.70 eV
C
O
DE -0.85 eV
6Carbon Monoxide Poisoning
DE 0.00 eV
O
O
Fe2
DE -0.70 eV
C
O
DE -0.85 eV
7Carbon Monoxide Poisoning
DE 0.00 eV
O
O
Fe2
DE -0.70 eV
C
O
DE -0.85 eV
8Carbon Monoxide Poisoning
DE 0.00 eV
O
O
Fe2
DE -0.70 eV
C
O
DE -0.85 eV
9Binding Probabilities
10Binding Behaviors
11Langmuir Isotherms
12Langmuir Isotherms
13Langmuir Isotherms
k T
Zint
vQ
vQ
Po
V/N
Zint
m
14Fermions and Bosons
- Fermions
- ½ integer spin
- Cannot have more than one in the same single
particle state - e, m, ms, x, y, z
- Bosons
- Integer spin
- Can have more than one in the same single
particle state - e, m, ms , x, y, z
15Volume Ratios
Quantum mechanical system
Classical mechanical system
- Wavefunction volume
- Particle volume
16Fermions and Bosons
1
11
2
12
3
13
4
14
5
15
6
7
8
9
10
17Fermions
Suppose we have a system that is a metal with an
s orbital valence band. We can put one electron
in each of the ms states (spin up and spin down)
of the s orbital. The metal is in contact with
the environment at some temperature, T.
reservoir
sys
18Fermions
19The Fermi-Dirac Distribution
Low T
High T
kBT
20Bosons
First, the partition function.
21Bosons
Next, the occupation number
22The Bose-Einstein Distribution
23The Bose-Einstein Distribution
24Fermions and Bosons
25The Bose-Einstein Condensate
26The Bose-Einstein Condensate
27The Bose-Einstein Condensate
28The Bose-Einstein Condensate
29Blackbody Radiation
Spectral Radiance
Wilhelm Wien 1864-1928
30Blackbody Radiation
Spectral Radiance
John William Strutt 3rd Baron Rayleigh 1842-1919
Sir James Hopwood Jeans 1877-1946
31Blackbody Radiation
Imagine light bouncing around in a very hot oven.
Standing waves are created.
32Blackbody Radiation
Classically, occupying high frequencies would
obey second law but contradict what we observe
when we open a hot oven.
33Blackbody Radiation
Max Planck 1858-1947
Two descriptions that describe either end of the
spectrum but not the middle. Enter Max Planck.
34Blackbody Radiation
Lets start with a partition function. We can
assume a collection of photons or harmonic
oscillators since the energy is the same form.
This is relative to the ground state energy,
which we can always set to zero.
35Blackbody Radiation
36Blackbody Radiation
Electron in an atom absorbs a photon.
The chemical potentials must balance to maintain
diffusive equilibrium.
37Blackbody Radiation
l 2L
l 2L/2
l 2L/3
l 2L/4
l 2L/5
l 2L/6
l 2L/7
L3 V
L
L
L
38Polarization
We need a factor of 2 to account for x and y
components of polarization.
39Blackbody Radiation
The total energy contained in a box of photons at
a particular temperature.
40Blackbody Radiation
nz
dn
n dq
n sin q df
q
ny
f
nx
41Blackbody Radiation
42Blackbody Radiation
43Change of Variables
44Energy Density Weins Law
45Blackbody Radiation
Change of variables to l
46Blackbody Radiation
Change of variables to l
47Planck Spectrum for various T
48Various Evaluations
Wave Type Frequency (Hz) Wavelength T(K)
gamma 1021 0.3 pm 1.76 x 1010
X-Ray 1018 0.3 nm 1.76 x 107
UV 1015 300 nm 17,600
VIsible 6 x 1014 500 nm 11,000
IR 1014 3 µm 1760
microwave 1010 3cm 0.176
49Cosmic Background
50Microwave Background
- 5 waves/cm ? ? 0.19 cm, f 160 GHz
- T 2.72 K
51Blackbody Radiation
52Planck Spectrum for various T
53An Oven _at_ 375o F
L3 0.125 m3
0.5 m
0.5 m
0.5 m
54An Oven _at_ 375o F
Fraction of spectrum in the visible
55An Oven _at_ 375o F
56Solar Spectrum
Incorrect Solar Spectrum from only changing
x-axis (ehc/l)
Correct Solar Spectrum from full change of
variables
l (m)
57Solar Spectrum
Fraction of spectrum in the visible
58Heat Capacity and Entropy
59Heat Capacity and Entropy
60Stefan Law
Side view
Front view
R
f
q
c dt
61Stefan Law
62Stefan Law
63Stefan Law
Side view
R
q
64Sun Temperature from Power
P/A 1370 W/m2
sun
1.50 x 1011 m
Rsun 6.96 x 108 m
65Sun Temperature from Power
66Thermal equilibrium meansthe oven and blackbody
areat the same temperature, thus their spectra
are the same
blackbody
oven
67Bose-Einstein Condensate
L
l 2L/3
l L
l 2L/n
l 2L
68Bose-Einstein Condensate
l 2L/3
l L
l 2L/n
l 2L
L
69Bose-Einstein Condensate
70Bose-Einstein Condensate
71Bose-Einstein Condensate
72Bose-Einstein Condensate
73Bose-Einstein Condensate
74Heme Occupation