Some Irradiation Results from a Chip in UMC018 Technology - PowerPoint PPT Presentation

About This Presentation
Title:

Some Irradiation Results from a Chip in UMC018 Technology

Description:

Title: Folie 1 Last modified by: AAA Document presentation format: Other titles: Arial Wingdings Times New Roman DejaVu Sans Symbol Verdana ... – PowerPoint PPT presentation

Number of Views:79
Avg rating:3.0/5.0
Slides: 64
Provided by: jinr1
Category:

less

Transcript and Presenter's Notes

Title: Some Irradiation Results from a Chip in UMC018 Technology


1
Some Irradiation Results from a Chipin UMC018
Technology
  • Peter Fischer for Christian Kreidl
  • Heidelberg University

2
Summary
  • UMC018 Chip was irradiated with X-rays to 7.5Mrad
  • No degradation after annealing
  • Strange effects around 1.2Mrad
  • Work done in the frame of the DEPFET project
  • Measurements by Christian Kreidl
  • Chip by Ivan Peric

3
The Chip
  • DCD1 DEPFET Current Digitizer
  • Readout Chip for DEPFET Sensor columns

DEPFET Sensor goes here
DCD1 Chip
current memory cells to subtract pedestal
8 bit ADCs using current memory cells
4
More Details...
2 ADCs
ADC Output Logic
Current Subtract
Regulated Cascode
Sampling
Test Injection current
Generate ADC memory cell control signals
ADC result calculation, MUX
per pixel
3 x 6 lines
ADC Steering Signals
Serializer
Sample
Monitoring Pad
Clock Divider
600MHz
sync for FPGA, Switcher
5
Chip Layout Design
  • UMC 0.18µm technology, 2 x MiniASIC size
  • ADC in radhard layout (enclosed NMOS, guard
    rings)
  • Digital part without any precautions
  • 72 inputs

6
Pixel Layout
Size x 180µm Size y 110µm
regulated cascode
two 8 bit algorithmic current mode ADCs working
interleaved
digital stuff (conservative layout)
bump pad with 60µm opening
test injection
7
Chip Test Setup
  • Chip glued bonded to PCB no cover
  • Readout via USB

8
Irradiation Facility in Karlsruhe
  • 60 keV X-Ray tube at Institut für Nuclear
    Physics, Karlsruhe
  • 100-250 krad/h (depending on distance),
    calibrated setup
  • Thanks to Dr. Simonis, Mr. Dierlamm and Mr.
    Ritter for help!

9
Irradiation
  • Dose
  • 31h _at_99.5 krad/h (d180mm) 3.1 Mrad
  • 18h _at_241 krad/h (d100mm) 4.4 Mrad
  • Total 7.5 Mrad
  • DCD Operation Mode
  • clock running permanently
  • control registers loaded every 30s with default
    values(precaution against SEU)
  • Measurements (while tube is on!)
  • current consumption on VDD ( analog digital)
  • on selected pixels- Current memory cell
    operating range- ADC characteristics- Test
    injection current value

10
Current consumption
  • Total supply current (analog digital)
  • Current rises until 1.2Mrad, then settles to
    pre-rad value

1.2Mrad
pre-rad
Probably bit flip In Bias DACs
11
Current Memory Cells
  • Cell keeps input voltage constant within 10µA

12
ADC Characteristic (ADC value vs. Injection DAC)
  • Test current injected via ON-CHIP injection DAC
  • SEUs during measurement (more at 1.2Mrad !)
  • most effects _at_lt1.2Mrad, some ADCs BROKEN
  • after 7Mrad and 6 days annealing back to pre-rad
    behavior

Pixel 59
Pixel 71
BROKEN _at_ 1.2Mrad
0 Mrad after anneal.
7 Mrad
Many SEUs
13
Test Injection Current vs. DAC value
  • Test injection current is ok (not dead). Some
    variation.

14
ADC Histograms
  • Plot deviation from straight line
  • 45nA (_at_0) ? 70nA (_at_1.2-7 Mrad) ? 44nA (7 day
    anneal)

15
ADC noise map
  • All ADCs back to initial values after anneal

Readout problems due to setup
Readout problems due to setup
16
Summary
  • No degradation after 7Mrad of 60keV X-rays
  • Strange effects at 1.2 Mrad (power higher, ADC
    dead)

17
Thank you!
18
Bump Bonding Status in HD
  • Peter Fischer, ziti, Uni Heidelberg
  • for Christian Kreidl

19
Reminder
  • We do gold stud bumping
  • Create a gold sphere on bonder
  • Place ball on chip, Thermocompress, rip off wire
  • Place all bumps
  • Flip press heat (50g / bump)
  • Can put bumps on both sides to reduce forces
  • Can put isotropic glue with conducting particles
  • Key parameters
  • Diameter of balls 45µm
  • Min. bond pad size 60µm
  • Min pitch 100µm
  • Advantages
  • single chip (prototype) process, in house, cheap
  • Drawbacks
  • sequential, limited of pads, large force,
    possible destruction of electronics under pad,
    need hard substrate, no rework

20
Tests with Dummy Chips
  • Aluminum on Silicon structures
  • Substrate and chip
  • Trace pattern to check contact shorts

SuS_at_Uni-Heidelberg
21
Chip with Bumps
22
Flipped Assemblies
  • 80g/bump all bumps connected, no shorts
  • 20g/bump 4 of 6 snakes connected, chip fell off

SuS_at_Uni-Heidelberg
23
Large Size Module
  • Mechanical demonstrator of ILC vertex detector
    module
  • no electrical tests
  • check how to handle a large silicon device
  • check how low pitch flipping works
  • 16 DCD (dummy) chips
  • 36 Switcher (dummy) chips
  • 11,9 cm x 1,6 cm
  • No electrical test possibilities

8 DCD chips
8 DCD chips
2 x 18 Switcher chips
24
Placing Chips Close to Each Other (side view)
  • Switcher (dummy) chips
  • 164 bumps each1
  • ,4mm x 5,8mm
  • 60g/bump 9,8kg/chip

Edge of flip tool
SuS_at_Uni-Heidelberg
SuS_at_Uni-Heidelberg
25
ILC Mechanical Sample
SuS_at_Uni-Heidelberg
26
Minimum gap
50µm gap
50µm gap
SuS_at_Uni-Heidelberg
27
Module End
  • 224 bumps/chip, 1.35mm x 4.95mm, 13.4kg/chip

200µm gap
SuS_at_Uni-Heidelberg
28
Full sample
  • One module populated with 52 chips
  • No failures !

SuS_at_Uni-Heidelberg
29
Effort
  • Bonding process cleaning, mounting, aligning,
    bumping
  • Switcher 11min
  • DCD 13min
  • Flipping process pickup, aligning,
    thermocompression
  • 9 min
  • 2 days of work including learning
  • Improvements
  • build better mounting device for single chip
    bumping (mechanical clamp)

30
Thank you!
31
ADC Design in Heidelberg
  • Peter Fischer, ziti, Uni Heidelberg
  • ADC Design Ivan Peric

32
Content
  • Algorithmic / Pipeline ADC principles
  • Voltage vs. Current Mode
  • ADC in DEPFET readout chip
  • Reminder ADC of David Muthers (Kaiserslautern)
  • Comparison of figures of Merit

33
Algorithmic (Cyclic) ADC
  • Idea
  • Compare signal to half scale ? generate BIT
  • If BIT 1 subtract half scale
  • Multiply result by two
  • Restart over again
  • Every cycle produces a new bit
  • Very popular architecture
  • Resolution limited by precision of Compare /
    Subtract / Multiply
  • Comparator requirements are relaxed by two
    threshold per stage (and some error correction)

34
ADC Stage



-
k Bit
35
Pipeline ADC
  • Shift value through many stages
  • Can process one new value per cycle
  • More hardware
  • Faster
  • Can scale cells for lower precision in later cells

Stage 1
Stage 2
Stage m-1
Stage m
Vin
Bit Alignment RSD Correction
36
Voltage vs. Current
  • Signal can be voltage or current
  • Voltage
  • Often natural quantity delivered by circuit
  • Comparison simple
  • Add / Subtract duplication with switched
    capacitor circuits
  • Large swings
  • Needs linear capacitors
  • Current
  • May require U-gtI conversion
  • Low swing operation
  • Add / Subtract very simple
  • Duplication with multiple current copy add
  • Can do with simple, small capacitors
  • No obvious winner

37
Standard Current Memory Cell
  • Tracking phase Diode connected transistor
  • Sample on gate capacitance
  • Drawbacks
  • Charge injection is signal dependent
  • Low output resistance current dependent
  • Input potential current dependent
  • Large storage cap (low leak) decreases speed

Iin / Iout
38
Pixel Layout
Two 8 Bit ADCs Current memory cells, Comparators,
Reference sources. Optimized, rad hard layout
ADC timing signals (can be shared)
110µm
2 x Output Logic(shift registers) Very
conservative layout Using standard cells
39
ADC Characteristic
  • 8 Bit ADC output vs. injection DAC value

40
ADC Noise / INL
  • Plot deviation from ideal value for various
    inputs
  • Width mostly from noise in input stage

41
Pipeline ADC (Design Study)

42
Comparison ADC from D. Muthers, Kaiserslautern
  • Voltage mode
  • Cyclic Pipeline version
  • Early version used in TRAP chip

43
Comparison
HD, I mode Cyclic HD, I mode Pipeline KL, V mode Cyclic KL, V mode Pipeline Commercial IQ-Analog
ENOBs 8 (9) 9 (design) 9.2 _at_ fin5MHz 9.7 9
speed 6 MS/s 25 MS/s 10 MS/s 75 MS/s 80 MS/s
Power 1 mW 4.5 mW 9.5 mW 30 mW 8 mW
Layout area 3.000 µm2 (rad hard) 10.000 µm2 (rad hard) 110.000 µm2 (non rad hard) gt 200.000 µm2 (non rad hard) 210.000 µm2 (0.13µm)
Additionally Shift register Delay registers ??? ??? -
FoM pJ/conv 0.65 0.35 1.6 0.48 0.2

  • FoM P / 2ENoB / f 1012 (small is good)
  • ADC from HD are VERY small

44
Thank you!
45
Simple Serial Data Driver
  • Peter Fischer, ziti, Uni Heidelberg

46
Goal
  • Study a serial driver suited to directly drive an
    FPGA
  • Find out how
  • Complex
  • Large
  • Power hungry
  • it is.
  • Later study copper transmission
  • how long can we go ?
  • How fast can we go ?
  • For which type of cable ?
  • for which power requirement ?

47
Design choices
  • Use (free) Aurora protocol from Xilinx
  • No back channel
  • No channel bonding
  • Minimize protocol engine
  • Use radiation hard library for a test

48
Aurora Protocol
  • Physical layer interface electrical levels,
    clock encoding, symbol coding
  • Channel initialization and error handling
  • Link layer
  • Beginning / End of data
  • IDLE
  • Clock compensation
  • 8B/10B encoding
  • Arbitrary data format, Data packets with
    arbitrary length
  • 4 Phases
  • Initialization
  • Synchronization of receiver clock (send some
    syncs)
  • Data transmission
  • Idle
  • Must inject clock compensation characters from
    time to time

49
Components
  • FIFO (data buffer)
  • Control FSM
  • 8b/10b Encoder
  • Serializer
  • LVDS-Driver

50
Initialisation
RESET
TXRES_0
ln_cnt lt N2
TXRES_1
zur Validierung
res_cnt lt 3
51
Validation
VAL/A/
VAL/R/
von Initialisierung
idle_cnt 32
idle_cnt lt 32
idle_cnt 32
VAL/K/
val_cnt 60
val_cnt 60
val_cnt 60
CV_1
CV_0
IDLE / Daten
52
Idle
ev_cnt lt 12
CC_1
ccc_cnt 10000
ccc_cnt 10000
IDLE/A/
IDLE/R/
idle_cnt 32
ccc_cnt 10000
von Daten / Valid.
idle_cnt 32
idle_cnt lt 32
IDLE/K/
valid_data even
valid_data even
valid_data even
Daten
53
Data Transfer
CC_4
CC_3
SCP_0
SCP_1
von IDLE / Val.
valid_data
!valid_data !even
PADDING
DATA
CC_2_0
CC_2_1
!valid_data even
!valid_data
CC_5_1
CC_5_0
ECP_0
ECP_1
IDLE
!valid_data
valid_data
Daten
54
8B/10B Kodierung
  • Bei der 8B/10B Kodierung können Sequenzen von
    maximal 5 aufeinander folgenden Nullen oder
    Einsen im seriellen Datenfluss entstehen.
  • Die Anzahl der Einsen pro Symbol unterscheidet
    sich maximal um zwei von der Anzahl der Nullen.
  • Zwischen zwei beliebigen Punkten im seriellen
    Datenfluss können maximal 6 Einsen mehr als
    Nullen (oder umgekehrt) vorkommen
  • Drei der Kontroll-Symbole, noch Kommas genannt,
    besitzen Bitmuster, die sonst bei keiner
    Kombination von 2 gültigen 10-Bit Symbolen
    vorkommen können.

55
Serializer
  • For simplicity Realize in CMOS
  • Use shift register with load
  • Load generation most time critical
  • Several circuits have been compared
  • Minimal speed 600 MHz
  • Reached 1.9GHz with standard cells

56
Test circuit on Xilinx Evaluation board
  • Generate Aurora compatible parallel data stream
  • Send to MGT serializer
  • Loopback via SATA cable
  • Receiver uses Aurora protocol

57
Sample result data transfer and Idle
58
Synthesis with VST library
  • First Using VST library

59
Simplification
  • Try designs with NO clock compensation characters

60
Synthesis with Rad hard library
61
Power estimation
  • No LVDS driver (which will dominate!)
  • Using VST Library
  • Rad hard x4

62
Place Route
  • 200 x 200mm2 for rad had design

63
Next steps
  • Study realistic, fast LVDS driver
  • Study cable properties modelling
  • First step Simulated eye-diagram with
    Kaiserslautern driver 10 cable, 24AWG (no
    pre-emphasis)

64
Thank you!
Write a Comment
User Comments (0)
About PowerShow.com