Title: Blast2GO
1High throughput functional annotation and
analysis with the Blast2GO suite
Ana Conesa Bioinformatics Department Centro de
Investigaciones Prínicpe Felipe aconesa_at_cipf.es
2Credits
Blast2GO Development
Biomedical Informatics UPV, Valencia Juan Miguel
Gómez Montserrat Robles
Bioinformatics Department CIPF, Valencia
Bioinformatics Department CIPF, Valencia Ana
Conesa Stefan Goetz
Centro de Genómica IVIA, Valencia Javier
Terol Manuel Talón
Blast2GO special thanks to ANNEX Simen Myhre,
Henrik Tveit (MTNU)? GOSSIP Nils Blüthgen
(MicroDiscovery GmbH)? ZVTM Emmanuel Pietriga
(INRIA)? goslim.tair.obo Suparna Mundodi (TAIR)?
3Motivation
Numerous EST/genome projects
Large amounts of NEW sequence data
Functional Genomics Studies
Need of Functional Annotation
Which kind of tool?
Easy to set up run Versatil
Universal High-throughput interactive Combine
annotation function analysis
www.blast2go.org
4Gene Ontology based annotation
Molecular Function Biological Process Cellular
Component
more general
more specific
5Concepts of automatic annotation
Similarity between Sequences
Consistency of assigned annotation
Precision vs. recall
Resolution Level in GO hierarchy
Selection of recovered annotation data
Quality of existence annotation
B2G Annotation Rule
6Blast2GO Annotation Rule
7Main functions within Blast2GO
GO Second Layer
GO-Slim
Manual Curation
Validation
Annotation (GO,IPR,EC)?
Statistics
InterProScan
Graph Visualization
KEGG maps
Additional Features
Enrichment
Pipeline
Batch Mode
costumDB
localB2GDB
Compare
GeneIDs
8Blast2GO Schema
9Blast2GO use
Species Citrus, nicotiana, maize, soybean,
tomato, grape Streptococcus, Trichoderma,
Schistosoma, Cyanobacteria European
Flounder,pig, flidder crab, rat, honneybee,
human Metagenome projects
10Where to find Blast2GO
Web http//www.blast2go.orghttp//blast2go.bio
info.cipf.es http//www.geneontology.orghttp//gr
oups.google.com/group/Blast2GO
More infoBioinformatics 2005 21
3674-3676 Blast2GO tutorial http//www.blast2go.o
rg
11Blast2GO Guided Tour
Ana Conesa Bioinformatics Department Centro de
Investigaciones Prínicpe Felipe aconesa_at_cipf.es
12Start Blast2GO
www.blast2go.org
- Desktop application
- Java webstart technology
- Internet connection
13Load Sequences
14Run BLAST search
15BLAST results
16Blast Distribution Charts
17Exercise 1
- Launch Blast2GO
- Open FASTA file (unizip examples.zip)?
- Browse number of sequences and sequence length
- Unselect all sequences
- Select 5 sequences
- Run Blast against NCBI nr (change parameters if
desidered)?
18Exercise 2
- Open blast_example.dat
- Examine Distribution charts
19Mapping
20Resources of mapping
- GO mapping resources
- Full Gene Ontology DB
- NCBI Flat Files gene2accession (4 079 414
entries) gene_info (1 635 614 entries) - PIR - Non-Redundant Reference Protein Database
including PSD, UniProt, Swiss-Prot, TrEMBL,
RefSeq, GenPept y PDB
21Annotation
GO
DAG Validation Annex
GOSlim
EC/KEGG
InterPro
22Gene Ontology annotation
23Annotation Charts
24Exercise 3
- Select 10 first sequences
- Run Mapping and Annotation
- Select non annotated sequences and re-annotate
with milder parameters - Lo annotation_example.dat file
- Visualize Results on Mapping/Annotation Charts
25Sequence menu
26Modulation of annotation
Extend annotation by the GO Second Layer
Molecular Function
acts in
is involved in
Biological Process
Cellular Component
Myhre et al, Bioinformatics 2006
27Exercise 4
- Browse BlastResults to (select one sequence and
use sequence menu) - Draw annotation graph
- View Annotations
- Edit/change annotation
- Select a few sequences to run GoSlim
- Run Annex
28Enzyme annotation and Kegg Maps
GO ? Enzyme Codes ? KEGG maps
29InterproScan
30Exercise 5
- Select a few sequences to run InterProScan
- Change terms view GO ID/term, IPS/GO
- Merge IPS results with Blast Annotations
- Load annot_interpro_annex_example.dat
- Export GO Annotations
- Export IPS Annotations
- Save Project and Sequence Table
31Visualization
GO Graph Visualization as tool to explore
data Interactive and zoomable graphs Color
graphs highlighting areas of interest
32Visualization Pies
Level and Multilevel Charts
33Exercise 6
- Select some sequences using select by names
function (use test.example.txt) - Create a GO Combined Graph
- Create Pies at level 4 and Multilevel Pie at
score 3 - Play with filters to simplify the graph (set
score filter to 3) - Export GO Graph data as table and visualize
34Functional analysis with B2G
Enrichment Analysis (Fisher)?
35Exercise 7
- Run Enrichment Analysis using test and reference
set files - Create Bar Chart
- Create Enriched Graph and modulate number of
nodes - Export results