Title: Material Based on Chapter 5
1Material Based on Chapter 5
The Planetary Boundary Layer
2Class Slide
The Planetary Boundary Layer
3Class Slide
4Class Slide
5Class Slide
6Class Slide
7Class Slide
8Class Slide
9Class Slide
10Class Slide
Red w(t) Blue q(t)
11Class Slide
12Class Slide
13Class Slide
14Class Slide
15Class Slide
is the radiative heating rate.
Note
16Class Slide
17Class Slide
18Class Slide
19Class Slide
20Class Slide
21Class Slide
22Class Slide
23Derive TKE Equation
Similarly for v and w
24Class Slide
25Class Slide
- Frictional dissipation (molecular diffusion)
- gt 0
TR Redistribution by transport pressure
forces (no new TKE created)
26Class Slide
27Class Slide
28Class Slide
Analogue in large-scale flow
How does this circulation lower center of mass?
29BPL - TKE increase for unstable PBL
If PBL heated from below, then ?(z)
BPL gt 0 Primary energy source for unstable
PBL (In stable PBL, BPL term gives energy loss)
w lt 0 ? lt 0
w gt 0 ? gt 0
z
?
30BPL - Side Note
More precise ?(z) when well-mixed PBL is fully
developed.
Homogeneous, well-mixed layer Unstable layer
maintained near surface by surface heating
z
?
31Class Slide
32Class Slide
33Class Slide
34Class Slide
35Class Slide
36Class Slide
37Class Slide
38Class Slide
39Class Slide
40Class Slide
41Class Slide
42Class Slide
(See figures)
43Class Slide
44Class Slide
45Class Slide
46Class Slide
47Class Slide
48Class Slide
49Class Slide
50Class Slide
(Add friction? See Figure 5.3 in Holton.)
51Class Slide
52Class Slide
53Class Slide
54Class Slide
55Class Slide
56Class Slide
57Class Slide
58Class Slide
59Class Slide
60Class Slide
61Class Slide
62Class Slide
63Class Slide
64Class Slide
65Class Slide
66Class Slide
67Class Slide
(See Figures 5.4 and 5.5 in Holton.)
68Class Slide
69Class Slide
70Class Slide
71Class Slide
72Class Slide
73Class Slide
74Class Slide
75Class Slide
76Class Slide
77Class Slide
(See Fig. 5.5 in Holton additional figures.)
78Class Slide
79Horizontal Wind in PBL
In PBL, wind component toward lower pressure
L
giving horizontal convergence around low center
80Vertical Wind in PBL
Mass convergence around low pressure
PBL top
L
gives upward motion over low. Effect on vortex?
81Class Slide
82Class Slide
83Class Slide
84Class Slide
85Class Slide
86Class Slide
87Class Slide
88Slowing Vortex Vortex Compression
Ekman pumping reduces vorticity in free
troposphere by vortex compression
Tropopause (w 0)
PBL top
L
89Slowing Vortex Conservation of Angular Momentum
Alternatively, outward secondary circulation in
free troposphere slows vortex by conservation of
angular momentum
PBL top
L
90Class Slide
91Class Slide
92Class Slide
93Spin-Down Time
te H 2/(fKm) 1/2
- Use H 10 km
- and previous values for other constants
- Then, ?e 7 days
- Longer than synoptic time scale
- A reason why PBL was ignored when introducing
quasi-geostrophic motion
94Class Slide
95Ekman-Pumping Torque
Outward (secondary ) flow gives torque against
primary flow by Coriolis force.
L
96Ekman-Pumping Effectiveness
- Ekman pumping more effective than diffusion
- Works not by mixing high/low vorticity air
- Rather by forcing mass divergence in free
troposphere - Angular momentum (moment of intertia) x
(rotation rate) - Outward mass movement
- gt increased moment of inertia
- gt reduced rotation to conserve angular mom.
97Baroclinic Atmosphere?
- If atmosphere baroclinic (not barotropic)
- Circulation confined closer to surface
- Shear created in vortex gt more damping closer to
surface - Shear balanced by induced ?T uplifted air at
center cooler than air at vortex edge
- Final note all rests on Ekman PBL
- Qualitatively OK
- Gives correct approximate physics (cross isobar
flow)
98END