Title: Sparsity Control for Robust Principal Component Analysis
1Sparsity Control for Robust Principal Component
Analysis
- Gonzalo Mateos and Georgios B. Giannakis
- ECE Department, University of Minnesota
- Acknowledgments NSF grants no. CCF-1016605,
EECS-1002180
Asilomar Conference November 10, 2010
2Principal Component Analysis
- Motivation (statistical) learning from
high-dimensional data
- Principal component analysis (PCA) Pearson1901
- Extraction of low-dimensional data structure
- Data compression and reconstruction
- PCA is non-robust to outliers Jolliffe86
- Our goal robustify PCA by controlling outlier
sparsity
2
3Our work in context
- Contemporary applications
- Anomaly detection in IP networks Huang et
al07, Kim et al09 - Video surveillance, e.g., Oliver et al99
- Robust PCA
- Robust covariance matrix estimators
Campbell80, Huber81 - Computer vision Xu-Yuille95, De la
Torre-Black03 - Low-rank matrix recovery from sparse errors
Wright et al09
- Hubers M-class and sparsity in linear regression
Fuchs99
3
4PCA formulations
- Minimum reconstruction error
- Dimensionality reduction operator
- Reconstruction operator
Solution
4
5Robustifying PCA
- Least-trimmed squares (LTS) regression
Rousseeuw87
LTS-based PCA for robustness
(LTS PCA)
is the -th order statistic among
Trimming constant determines breakdown point
- Q How should we go about minimizing ?
(LTS PCA) is nonconvex existence of
minimizer(s)?
A Try all subsets of size , solve, and
pick the best
- Simple but intractable beyond small problems
5
6Modeling outliers
inlier
- Introduce auxiliary variables s.t.
outlier
- Inliers obey outliers
something else - Inlier noise are zero-mean i.i.d.
random vectors
- Remarks
- and are
unknown - If outliers sporadic, then vector is sparse!
6
7LTS PCA as sparse regression
(P0)
- Justifies the model and its estimator (P0) ties
sparsity with robustness
7
8Just relax!
(P2)
- Role of sparsity controlling is central
- Q Does (P2) yield robust estimates ?
A Yap! Huber estimator is a special case
9Entrywise outliers
(P1)
10Alternating minimization
(P1)
10
11Refinements
- Nonconvex penalty terms approximate better
in (P0)
11
12Online robust PCA
- Motivation Real-time data and memory limitations
- Exponentially-weighted robust PCA
12
13Video surveillance
13
Data http//www.cs.cmu.edu/ftorre/
14Online PCA in action
- Figure of merit angle between and
14
15Concluding summary
- Sparsity control for robust PCA
- LTS PCA as -(pseudo)norm regularized regression
(NP-hard) - Relaxation (group)-Lassoed PCA M-type
estimator - Sparsity controlling role of central
- Batch and online robust PCA algorithms
- i) Outlier identification, ii) Robust subspace
tracking - Refinements via nonconvex penalty terms
- Tests on real video surveillance data for anomaly
extraction
- Ongoing research
- Preference measurement conjoint analysis and
collaborative filtering - Robustifying kernel PCA and blind dictionary
learning
15