Advanced Functional Programming - PowerPoint PPT Presentation

About This Presentation
Title:

Advanced Functional Programming

Description:

Tim Sheard Oregon Graduate Institute of Science & Technology Lecture 18: MetaML Examples Staged Pattern Matching Staaged interpreter MetaML extensions – PowerPoint PPT presentation

Number of Views:28
Avg rating:3.0/5.0
Slides: 47
Provided by: DavidM388
Learn more at: http://web.cecs.pdx.edu
Category:

less

Transcript and Presenter's Notes

Title: Advanced Functional Programming


1
Advanced Functional Programming
  • Tim Sheard
  • Oregon Graduate Institute of Science Technology
  • Lecture 18
  • MetaML Examples
  • Staged Pattern Matching
  • Staaged interpreter
  • MetaML extensions

2
Synopsis MetaML features
  • Pattern based object code templates
  • templates look like the object language
  • Object-code has a type.
  • The type of code is embedded in the meta-lang
    type system
  • Object code has structure.
  • Possible to analyze it, take it apart, etc.
  • Automatic alpha-renaming of bound variables
  • No name clashes
  • Object-code can be run or executed (runtime
    code-gen.)
  • Object-code can be observed (pretty-printed)

3
An example Staged Pattern Matching
  • Consider an algebra of terms
  • Terms have constants (like 5), and operators
    (like )
  • Patterns are like terms, Except they also include
    variables
  • datatype 'a Structure
  • Op of ('a string 'a) ( e.g. (1 5) )
  • Int of int ( e.g. 5 )
  • datatype term Wrap of term Structure
  • datatype pat
  • Var of string
  • Term of pat Structure

4
Rewrite Rules
  • A rewrite rule is encoded as a pair of patterns
  • (x y) z --gt x (y z)
  • ( Term(Op(Term (Op(Var "x","",Var "y")),
  • "",
  • Var "z")),
  • Term(Op(Var "x",
  • "",
  • Term(Op(Var "y","",Var "z"))))
  • )

5
A rule Compiles into a program
  • with type term -gt term
  • (x y) z --gt x (y z)
  • (fn Wrap a gt
  • (case a of
  • Op(d,c,b) gt
  • if "" c
  • then (case unWrap d of
  • Op(g,f,e) gt
  • if "" f
  • then Wrap (Op(g,"",
  • Wrap
    (Op(e,"",b))))
  • else Wrap a
  • _ gt Wrap a)
  • else Wrap a
  • _ gt Wrap a))

6
Simple but inefficient solution
  • ( rewrite pat pat -gt term -gt term )
  • fun rewrite (lhs,rhs) term
  • case match lhs emptySubst term of
  • NONE gt term
  • SOME sigma gt substitute sigma rhs
  • Where match does a simultaneous walk over lhs and
    term and builds a substitution.
  • A substitution can either fail (NONE) or succeed
    (SOME sigma) with a set of bindings sigma.

7
fun match pat msigma (term as (Wrap t)) case
(msigma) of NONE gt NONE SOME (sigma) gt
(case pat of Var u gt (case find
u sigma of NONE gt SOME ((u,term)
sigma) SOME w gt if termeq w term
then SOME sigma else NONE)
Term(Int n) gt (case t of Int u
gt if un then msigma else NONE _ gt
NONE) Term(Op(t11,s1,t12)) gt
(case t of Op (t21,s2,t22) gt
(if s2 s1 then
(match t11 (match t12 msigma t22) t21)
else NONE) _ gt NONE)
8
Alternate, efficient Solution
  • fun rewrite (lhs,rhs) term
  • case match lhs emptySubst term of
  • NONE gt term
  • SOME sigma gt substitute sigma rhs
  • ( rewrite pat pat -gt term -gt term )
  • fun rewrite (lhs,rhs) term
  • match2 lhs emptySubst term
  • (fn NONE gt term
  • SOME sigma gt substitute sigma rhs)
  • Rather than returning a substitution, match is
    passed a continuation which expects a
    subsitution, and match applies the continuation
    to get the answer

9
fun match2 pat msigma (term as (Wrap t)) k case
(msigma) of NONE gt k NONE SOME (sigma)
gt (case pat of Var u gt (case find
u sigma of NONE gt k (SOME ((u,term)
sigma)) SOME w gt if termeq w term then
k (SOME sigma)
else k NONE) Term(Int n) gt (case t
of Int u gt if un then k msigma else k
NONE _ gt k NONE) Term(Op(t11,s1,t12)
) gt (case t of Op
(t21,s2,t22) gt (if s2 s1
then match2 t11 msigma t21
(fn sigma2 gt match2 t12 sigma2 t22 k)
else k NONE) _ gt k NONE))
10
Finally stage the result
  • Work with pieces of code with type term rather
    than terms themselves.
  • type substitution
  • ((string lttermgt) list) option
  • match pat -gt substitution -gt lttermgt -gt
  • (substitution -gt lttermgt)
  • -gt lttermgt
  • rewrite(pat pat ) -gt
  • ltterm -gt termgt

11
Staged match function
  • fun match pat msigma term k
  • case (msigma) of
  • NONE gt k NONE
  • SOME (sigma) gt
  • (case pat of
  • Var u gt
  • (case find u sigma of
  • NONE gt k (SOME ((u,term) sigma))
  • SOME w gt
  • ltif termeq w term
  • then (k (SOME sigma))
  • else (k NONE)gt)
  • ...

12
Staged match (continued)
  • ...
  • Term(Int n) gt
  • ltcase term of
  • Int u gt if u (lift n) then (k
    msigma)
  • else (k NONE)
  • _ gt (k NONE)gt
  • Term(Op(p11,s1,p12)) gt
  • ltcase term of
  • Op(t21,s2,t22) gt
  • if (lift s1) s2
  • then (match p11 msigma ltt21gt
  • (fn msig gt
  • match p12 msig ltt22gt
    k))
  • else (k NONE)
  • _ gt (k NONE)gt )

13
Staged rewrite
  • ( rewrite (pat pat ) -gt ltterm -gt termgt )
  • fun rewrite (lhs,rhs)
  • ltfn (Wrap t) gt
  • (match3 lhs (SOME ) ltWrap tgt
  • (fn NONE gt ltWrap tgt
  • SOME s gt subst s rhs) )gt

14
Applying the staging
  • Compiling a rule is now simply applying the
    staged rewrite function to a rule.
  • - rewrite r3
  • val it
  • lt(fn Wrap a gt
  • (case a of
  • Op(d,c,b) gt
  • if "" c
  • then (case unWrap d of
  • Op(g,f,e) gt
  • if "" f
  • then Wrap
  • (Op(g,"",Wrap
    (Op(e,"",b))))
  • else Wrap a
  • _ gt Wrap a)
  • else Wrap a
  • _ gt Wrap a))gt
  • ltterm -gt term gt

15
Using Metaml
  • MetaML can be downloaded from
  • http//www.cse.ogi.edu/PacSoft/projects/metaml/ind
    ex.html

16
MetaMLs extensions to ML
  • Staging extensions
  • bracket lt ... gt, escape (), lift(), and
    run()
  • Extensions to the type system
  • Higher order type constructors
  • Polymorphic components to Constructors
  • (limited rank2 polymorphism)
  • Qualified types (extensions to records)
  • Syntactic extensions
  • Monadic Do and Return
  • Extensible records

17
Higher Order Type Constructors
  • datatype ('a,'T -gt ) tree
  • Tip of 'a
  • Node of (('a,'T)tree) 'T
  • datatype 'a binary bin of 'a 'a
  • val z (int,list) tree
  • Node Tip 4, Tip 2
  • val w (int,binary ) tree
  • Node(bin (Tip 1,Node(bin (Tip 3, Tip 0))))

18
Polymorphic Components
  • datatype a A of ('a.'a list -gt 'a list)
  • fun copy
  • copy (xxs) x (copy xs)
  • val a1 A(rev)
  • val a2 A copy
  • - fun f x y (A g) (g x, g y)
  • val f Fn 'a,'b.'b list -gt 'a list -gt a
  • -gt ('b list 'a list )
  • - val q f 1,2,3 "x","y","d" a1
  • val q (3,2,1,"d","y","x")
  • (int list string list )

19
List Monoid example
  • datatype list_monoid LM of
  • inject 'a.'a -gt 'a list,
  • plus 'a. 'a list -gt 'a list -gt 'a list,
  • zero 'a.'a list
  • val lm1 LMinject fn x gt x,
  • plus fn x gt fn y gt x_at_y,
  • zero

20
Pattern Matching to access
  • fun f (LMinjectinj, plus sum, zero z)
  • (sum z (inj 2),
  • sum (inj true) (inj false))
  • - f lm1
  • val it (2,true ,false )
  • (int list bool list )

21
Monads
  • A Monad is
  • A type constructor T
  • a type to type function
  • and 2 polymorphic functions
  • unit a -gt a T
  • bind (a T) -gt (a -gt b T) -gt (b T)
  • an expression with type a T is a computation
  • returns a value of type a
  • might perform a T action

22
The standard morphisms
  • Unit creates a simple (nullary) action which
    does nothing
  • Bind sequences two actions
  • Non-standard morphisms describe the actions of
    the monad

23
Monads in MetaML
  • Uses both HHTC and local polymorphism
  • datatype ('m -gt ) monad
  • Mon of
  • ('a. 'a -gt 'a 'm)
  • ('a,'b. ('a 'm) -gt ('a -gt 'b 'm) -gt 'b 'm)
  • type 'x Id 'x
  • val Id (Mon (fn x gt x, fn x gt fn f gt f x))
  • Id Monad

24
Do and Return
  • MetaMLs interface to the standard morphisms unit
    and bind
  • val ex
  • let fun bind (SOME x) f f x
  • bind NONE f NONE
  • in (Mon(SOME,bind)) option Monad end
  • fun option f x
  • Do ex
  • z lt- x
  • Return ex (f z)
  • vs
  • fun option f x bind x (fn z gt unit (f z))

25
Syntactic Sugar
  • Do (Mon(unit,bind)) x lt- e f
  • bind e (fn x gt f)
  • Return (Mon(unit,bind)) e
  • unit e
  • Do m x1 lt- e1 x2 lt- e2 x3 lt- e3 e4
  • Do m x1 lt- e1
  • Do m x2 lt- e2
  • Do m x3 lt- e3 e4

26
State Transformer Monad
  • datatype 'a intSt C of (int -gt ('a int))
  • val intSt
  • let fun unit x C(fn n gt (x,n))
  • fun bind (C x) f
  • C (fn n gt let val (a,n1) x n
  • val (C g) f a
  • in g n1 end)
  • in (Mon(unit,bind)) end
  • Note how the state is threaded in and out of each
    computation.

27
Using staging to write a compiler
  • We will write a compiler using the following
    process.
  • 1 - Create a denotational semantics for the
    language
  • 2 - Express the semantics in terms of a monad
  • 3 - Express the actions of the compiler as
    non-standard morphisms of the monad.
  • 4 - Stage the monadic interpretor

28
The While-language
  • datatype Exp
  • Constant of int ( 5 )
  • Variable of string ( x )
  • Minus of (Exp Exp) ( x - 5 )
  • Greater of (Exp Exp) ( x gt 1 )
  • Times of (Exp Exp) ( x 4 )
  • datatype Com
  • Assign of (string Exp) ( x 1
    )
  • Seq of (Com Com) ( x 1 y 2
    )
  • Cond of (Exp Com Com) ( if x then x 1
    else y 1 )
  • While of (Exp Com) ( while xgt0 do x
    x - 1 )
  • Declare of
  • (string Exp Com) ( declare x 1 in
    x x - 1 )
  • Print of Exp ( print x
    )

29
Semantics of While-language
  • Exp - an environment to value function
  • an environment is mapping from variables to
    values
  • Var - reads the store
  • Com - a function that given an environment
    produces a new environment and also produces
    output
  • Declare - increase the size of the environment -
    environment behaves like a stack!
  • Assign - change the environment
  • Print - add something to the output - output
    behaves like a stream

30
1 stage meaning
  • type variable string
  • type value int
  • type output string
  • type env variable -gt value
  • eval Exp -gt env -gt value
  • interp Com -gt env -gt (env output)

31
2 stage meaning
  • Divide the environment into 2 pieces
  • static part (known at compile-time)
  • type location int
  • type index variable list
  • ( position in list encodes where variable
    lives in the stack )
  • dynamic part (known at run-time)
  • type value int
  • type stack value list
  • Meaning
  • eval Exp -gt index -gt (stack -gt value)
  • interp Com -gt index -gt stack -gt (stack output)

32
Creating a Monad
  • Note the dynamic meanings of Exp and Com
  • eval Exp -gt index -gt (stack -gt value)
  • interp Com -gt index -gt stack -gt (stack
    output)
  • Abstract over both these with the following
  • datatype a M
  • StOut of (stack -gt (a stack output))
  • eval Exp -gt index -gt value M
  • interp Com -gt index -gt unit M
  • Note that M is the type constructor of a monad.

33
Monad of state with output
  • datatype 'a M
  • StOut of (int list -gt ('a int list
    string))
  • fun unStOut (StOut f) f
  • fun unit x StOut(fn n gt (x,n,""))
  • fun bind (e a M) (f a -gt b M)
  • StOut(fn n gt
  • let val (a,n1,s1) (unStOut e) n
  • val (b,n2,s2) unStOut(f a) n1
  • in (b,n2,s1 s2) end)
  • val mswo M Monad Mon(unit,bind)

34
Actions in the Monad
  • ( read location -gt int M )
  • fun read i StOut(fn ns gt (fetch i ns,ns,""))
  • ( write location -gt int -gt unit M )
  • fun write i v StOut(fn ns gt( (), put i v ns,
    "" ))
  • ( push int -gt unit M )
  • fun push x StOut(fn ns gt ( (), x ns, ""))
  • ( pop unit M )
  • val pop StOut(fn (nns) gt ((), ns, ""))
  • ( output int -gt unit M )
  • fun output n StOut(fn ns gt((),ns, (toString
    n)" "))

35
Example translation
  • read location -gt int M
  • write location -gt int -gt unit M
  • push int -gt unit M
  • pop unit M
  • output int -gt unit M
  • declare x 5 in print (xx)
  • do M push 5
  • x lt- read xloc
  • y lt- Return M (x x)
  • output y
  • pop

36
Monadic eval
  • fun eval1 exp index ( eval1 Exp -gt index -gt
    int M )
  • case exp of
  • Constant n gt Return mswo n
  • Variable x gt let val loc position x index
  • in read loc end
  • Minus(x,y) gt Do mswo a lt- eval1 x index
  • b lt- eval1 y index
  • Return mswo (a - b)
  • Greater(x,y) gt Do mswo a lt- eval1 x index
  • b lt- eval1 y index
  • Return mswo (if a 'gt' b then 1 else 0)
  • Times(x,y) gt Do mswo a lt- eval1 x index
  • b lt- eval1 y index
  • Return mswo (a b)

37
Monadic interp
  • ( interp1 Com -gt index -gt unit M )
  • fun interp1 stmt index
  • case stmt of
  • Assign(name,e) gt
  • let val loc position name index
  • in Do mswo v lt- eval1 e index write loc v
    end
  • Seq(s1,s2) gt
  • Do mswo x lt- interp1 s1 index
  • y lt- interp1 s2 index
  • Return mswo ()
  • Cond(e,s1,s2) gt
  • Do mswo x lt- eval1 e index
  • if x1
  • then interp1 s1 index
  • else interp1 s2 index

38
Monadic interp (cont.)
  • While(e,body) gt
  • let fun loop ()
  • Do mswo v lt- eval1 e index
  • if v0 then Return mswo ()
  • else Do mswo
  • interp1 body index
  • loop ()
  • in loop () end
  • Declare(nm,e,stmt) gt
  • Do mswo v lt- eval1 e index
  • push v
  • interp1 stmt (nmindex)
  • pop
  • Print e gt
  • Do mswo v lt- eval1 e index output v

39
2-stage Monadic eval
  • fun eval2 exp index ( eval2 Exp -gt index -gt
    ltint Mgt )
  • case exp of
  • Constant n gt ltReturn mswo (lift n)gt
  • Variable x gt let val loc position x index
  • in ltread (lift loc)gt end
  • Minus(x,y) gt ltDo mswo a lt- (eval2 x index)
  • b lt- (eval2 y index)
  • Return mswo (a - b) gt
  • Greater(x,y) gt
  • ltDo mswo a lt- (eval2 x index)
  • b lt- (eval2 y index)
  • Return mswo (if a 'gt' b then 1 else
    0) gt
  • Times(x,y) gt ltDo mswo a lt- (eval2 x index)
  • b lt- (eval2 y index)
  • Return mswo (a b) gt

40
2-stage Monadic interp
  • ( interpret2 Com -gt index -gt ltunit Mgt )
  • fun interpret2 stmt index
  • case stmt of
  • Assign(name,e) gt
  • let val loc position name index
  • in ltDo mswo n lt- (eval2 e index)
  • write (lift loc) n gt end
  • Seq(s1,s2) gt ltDo mswo x lt- (interpret2 s1
    index)
  • y lt- (interpret2 s2
    index)
  • Return mswo () gt
  • Cond(e,s1,s2) gt
  • ltDo mswo x lt- (eval2 e index)
  • if x1 then (interpret2 s1 index)
  • else (interpret2 s2 index)gt

41
2-stage interp (cont.)
  • While(e,body) gt
  • ltlet fun loop ()
  • Do mswo v lt- (eval2 e index)
  • if v0 then Return mswo ()
  • else Do mswo q lt- (interpret2 body index)
  • loop ()
  • in loop () endgt
  • Declare(nm,e,stmt) gt
  • ltDo mswo x lt- (eval2 e index)
  • push x
  • (interpret2 stmt (nmindex))
  • pop gt
  • Print e gt ltDo mswo x lt- (eval2 e index)
  • output x gt

42
declare x 10 in x x - 1 print x
  • ltDo mswo
  • push 10
  • a lt- read 1
  • b lt- Return mswo a - 1
  • c lt- write 1 b
  • d lt- read 1
  • e lt- output d
  • Return mswo ()
  • pop
  • gt

43
Analyzing code
  • Matching against code
  • - fun is5 lt5gt true
  • is5 _ false
  • val is5 fn ltintgt -gt bool
  • - is5 (lift (14))
  • val it true bool
  • - is5 lt0gt
  • val it false bool

44
Variables in code patterns
  • - fun parts lt x y gt SOME(x,y)
    parts _ NONE
  • val parts fn ltintgt -gt (ltintgt ltintgt) option
  • - parts lt6 7gt
  • val it SOME (lt6gt,lt7gt) (ltintgt ltintgt) option
  • - parts lt2gt
  • val it NONE (ltintgt ltintgt) option

45
Higher-order code variables
  • Esc in pattterns under a lambda need to be
    higher-order variables.
  • - fun f ltfn x gt (g ltxgt) 0gt ltfn y gt (g
    ltygt)gt
  • f x x
  • val f Fn 'b.lt'b -gt intgt -gt lt'b -gt intgt
  • - f ltfn x gt (x-4) 0gt
  • val it lt(fn a gt a - 4)gt ltint -gt intgt

46
Rules for higher-order variables
  • The escaped expression must me an application
  • The application must have a variable as the
    function part. This variable is the the
    higher-order variable
  • The arguments to the application must be
    bracketed variables which are bound in enclosing
    lambda expresions.
  • All lambda bound variables must appear.
  • Examples
  • ltfn x gt (f ltxgt)gt legal
  • ltfn x gt (f lt2gt)gt illegal
  • ltfn x gt f gt illegal
  • ltfn x gt fn y gt (f ltxgt)gt illegal
  • ltfn (x,y) gt (f ltxgt ltygt)gt legal
Write a Comment
User Comments (0)
About PowerShow.com