Title: Proteomics%20Technology%20and%20Protein%20Identification
1Proteomics Technology and Protein Identification
- Nathan Edwards
- Center for Bioinformatics and Computational
Biology
2Outline
- Proteomics
- Mass Spectrometry
- Protein Quantitation
- Protein Identification
- Computer Lab
3Proteomics
- Proteins are the machines that drive much of
biology - Genes are merely the recipe
- The direct characterization of a samples
proteins en masse. - What proteins are present?
- What isoform of each protein is present?
- How much of each protein is present?
4Systems Biology
- Establish relationships by
- Choosing related samples,
- Global characterization, and
- Comparison.
Gene / Transcript / Protein Gene / Transcript / Protein
Measurement Predetermined Unknown
Discrete (DNA) Genotyping Sequencing
Continuous Gene Expression Proteomics
5Samples
- Healthy / Diseased
- Cancerous / Benign
- Drug resistant / Drug susceptible
- Bound / Unbound
- Tissue specific
- Cellular location specific
- Mitochondria, Membrane
6Protein Chemistry Assay Techniques
- Gel Electrophoresis
- Isoelectric point
- Molecular weight
- Liquid Chromatography
- Hydrophobicity
- Digestion Enzymes
- Cut protein at motif
- Fluorescence
- Staining
- Affinity capture
- Phosphorylation
- Protein Binding
- Receptors
- Complexes
- Flow Cytometry
- Mass Spectrometry
- Accurate molecular weight
72D Gel-Electrophoresis
- Protein separation
- Molecular weight (Mw)
- Isoelectric point (pI)
- Staining
- Birds-eye view of protein abundance
82D Gel-Electrophoresis
Bécamel et al., Biol. Proced. Online 2002494-104
.
9Paradigm Shift
- Traditional protein chemistry assay methods
struggle to establish identity. - Identity requires
- Specificity of measurement (Precision)
- Mass spectrometry
- A reference for comparison (Measurement ?
Identity) - Protein sequence databases
10Mass Spectrometer
- Time-Of-Flight (TOF)
- Quadrapole
- Ion-Trap
- MALDI
- Electro-SprayIonization (ESI)
11Mass Spectrometer(MALDI-TOF)
(b) M_at_LDITM LR by Micromass, UK
Detector (linear mode)
Reflectron
N2 Laser
Lens
Detector (reflectron mode)
Target plate with sample
12Mass Spectrometer (MALDI-TOF)
UV (337 nm)
Microchannel plate detector
Field-free drift zone
Source
Pulse voltage
Analyte/matrix
Ed 0
Length D
Length s
Backing plate (grounded)
Extraction grid (source voltage -Vs)
Detector grid -Vs
13Mass Spectrum
14Mass is fundamental
15Mass Spectrum
16Mass Spectrum
- Isotope Cluster
- 12C 99
- 13C 1
17Peptide Mass Fingerprint
Cut out 2D-GelSpot
18Peptide Mass Fingerprint
Trypsin Digest
19Peptide Mass Fingerprint
- Trypsin digestion enzyme
- Highly specific
- Cuts after K R except if followed by P
- Protein sequence from sequence database
- In silico digest
- Mass computation
- For each protein sequence in turn
- Compare computer generated masses with observed
spectrum
20Mass Spectrometry
- Strengths
- Precise molecular weight
- Fragmentation
- Automated
- Weaknesses
- Best for a few molecules at a time
- Best for small molecules
- Mass-to-charge ratio, not mass
- Intensity ? Abundance
21Proteomics Quantitation
- 2D-Gel Electrophoresis
- Replicate LC/MS acquisitions
- Stable Isotope Labeling
- Protein profiling
22LC/MS for Peptide Abundance
23LC/MS for Peptide Abundance
Mass Spectrometry
LC/MS 1 MS spectrum every 1-2 seconds
24LC/MS for Peptide Abundance
25LC/MS for Peptide Abundance
26Stable Isotope Labeling
27Stable Isotope Labeling
- SILAC Lysine with 12C6 vs 13C6
28MALDI Protein Profiling
- Hundreds of healthy and diseased samples
- Single MS spectrum per sample
- Statistical datamining to find biomarkers
- Commercialization for ovarian cancer under name
Ovacheck
29MALDI Protein ProfilingMale Spectra
30MALDI Protein ProfilingFemale Spectra
31Protein Profiling Statgram
32MALDI Protein Profiling
33MALDI Protein Profiling
34Peptide Identification by MS/MS
- Most mature proteomics workflow
- Sample preparation
- Instruments
- Software
- Compatible with quantitation by
- Replicate LC/MS acquisitions
- Stable isotope labeling
- 2D-Gels (but essentially unnecessary)
35Sample Preparation for MS/MS
36Single Stage MS
MS
37Tandem Mass Spectrometry(MS/MS)
Precursor selection
38Tandem Mass Spectrometry(MS/MS)
Precursor selection collision induced
dissociation (CID)
MS/MS
39Peptide Fragmentation
Peptides consist of amino-acids arranged in a
linear backbone.
N-terminus
H-HN-CH-CO-NH-CH-CO-NH-CH-CO-OH
Ri-1
Ri
Ri1
C-terminus
AA residuei-1
AA residuei
AA residuei1
40Peptide Fragmentation
41Peptide Fragmentation
yn-i-1
-HN-CH-CO-NH-CH-CO-NH-
CH-R
Ri
i1
R
i1
bi1
42Peptide Fragmentation
xn-i
yn-i-1
-HN-CH-CO-NH-CH-CO-NH-
CH-R
Ri
i1
R
ai
i1
bi1
43Peptide Fragmentation
Peptide S-G-F-L-E-E-D-E-L-K
MW ion ion MW
88 b1 S GFLEEDELK y9 1080
145 b2 SG FLEEDELK y8 1022
292 b3 SGF LEEDELK y7 875
405 b4 SGFL EEDELK y6 762
534 b5 SGFLE EDELK y5 633
663 b6 SGFLEE DELK y4 504
778 b7 SGFLEED ELK y3 389
907 b8 SGFLEEDE LK y2 260
1020 b9 SGFLEEDEL K y1 147
44Peptide Fragmentation
1166
1020
907
778
663
534
405
292
145
88
b ions
K
L
E
D
E
E
L
F
G
S
147
260
389
504
633
762
875
1022
1080
1166
y ions
100
Intensity
0
m/z
250
500
750
1000
45Peptide Fragmentation
1166
1020
907
778
663
534
405
292
145
88
b ions
S
K
L
E
D
E
E
L
F
G
147
260
389
504
633
762
875
1022
1080
1166
y ions
y6
100
y7
Intensity
y5
y2
y3
y8
y4
y9
0
m/z
250
500
750
1000
46Peptide Fragmentation
1166
1020
907
778
663
534
405
292
145
88
b ions
K
L
E
D
E
E
L
F
G
S
147
260
389
504
633
762
875
1022
1080
1166
y ions
y6
100
y7
Intensity
y5
b3
b4
y2
y3
b5
y8
y4
b8
y9
b6
b7
b9
0
m/z
250
500
750
1000
47Peptide Identification
- Given
- The mass of the precursor ion, and
- The MS/MS spectrum
- Output
- The amino-acid sequence of the peptide
48Peptide Identification
- Two paradigms
- De novo interpretation
- Sequence database search
49De Novo Interpretation
50De Novo Interpretation
51De Novo Interpretation
52De Novo Interpretation
Amino-Acid Residual MW Amino-Acid Residual MW
A Alanine 71.03712 M Methionine 131.04049
C Cysteine 103.00919 N Asparagine 114.04293
D Aspartic acid 115.02695 P Proline 97.05277
E Glutamic acid 129.04260 Q Glutamine 128.05858
F Phenylalanine 147.06842 R Arginine 156.10112
G Glycine 57.02147 S Serine 87.03203
H Histidine 137.05891 T Threonine 101.04768
I Isoleucine 113.08407 V Valine 99.06842
K Lysine 128.09497 W Tryptophan 186.07932
L Leucine 113.08407 Y Tyrosine 163.06333
53De Novo Interpretation
from Lu and Chen (2003), JCB 101
54De Novo Interpretation
55De Novo Interpretation
from Lu and Chen (2003), JCB 101
56De Novo Interpretation
- Find good paths in spectrum graph
- Cant use same peak twice
- Forbidden pairs NP-hard
- Nested forbidden pairs Dynamic Prog.
- Simple peptide fragmentation model
- Usually many apparently good solutions
- Needs better fragmentation model
- Needs better path scoring
57De Novo Interpretation
- Amino-acids have duplicate masses!
- Incomplete ladders create ambiguity.
- Noise peaks and unmodeled fragments create
ambiguity - Best de novo interpretation may have no
biological relevance - Current algorithms cannot model many aspects of
peptide fragmentation - Identifies relatively few peptides in
high-throughput workflows
58Sequence Database Search
- Compares peptides from a protein sequence
database with spectra - Filter peptide candidates by
- Precursor mass
- Digest motif
- Score each peptide against spectrum
- Generate all possible peptide fragments
- Match putative fragments with peaks
- Score and rank
59Peptide Fragmentation
K
L
E
D
E
E
L
F
G
S
100
Intensity
0
m/z
250
500
750
1000
60Peptide Fragmentation
1166
1020
907
778
663
534
405
292
145
88
b ions
K
L
E
D
E
E
L
F
G
S
147
260
389
504
633
762
875
1022
1080
1166
y ions
100
Intensity
0
m/z
250
500
750
1000
61Peptide Fragmentation
1166
1020
907
778
663
534
405
292
145
88
b ions
K
L
E
D
E
E
L
F
G
S
147
260
389
504
633
762
875
1022
1080
1166
y ions
y6
100
y7
Intensity
y5
b3
b4
y2
y3
b5
y8
y4
b8
y9
b6
b7
b9
0
m/z
250
500
750
1000
62Sequence Database Search
- No need for complete ladders
- Possible to model all known peptide fragments
- Sequence permutations eliminated
- All candidates have some biological relevance
- Practical for high-throughput peptide
identification - Correct peptide might be missing from database!
63Peptide Candidate Filtering
- Digestion Enzyme Trypsin
- Cuts just after K or R unless followed by a P.
- Basic residues (K R) at C-terminal attract
ionizing charge, leading to strong y-ions - Average peptide length about 10-15 amino-acids
- Must allow for missed cleavage sites
64Peptide Candidate Filtering
- gtALBU_HUMAN MKWVTFISLLFLFSSAYSRGVFRRDAHKSEVAHRFKDL
GEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAK
No missed cleavage sites
MK WVTFISLLFLFSSAYSR GVFR R DAHK SEVAHR FK DLGEENF
K ALVLIAFAQYLQQCPFEDHVK LVNEVTEFAK
65Peptide Candidate Filtering
- gtALBU_HUMAN MKWVTFISLLFLFSSAYSRGVFRRDAHKSEVAHRFKDL
GEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAK
One missed cleavage site
MKWVTFISLLFLFSSAYSR WVTFISLLFLFSSAYSRGVFR GVFRR RD
AHK DAHKSEVAHR SEVAHRFK FKDLGEENFK DLGEENFKALVLIAF
AQYLQQCPFEDHVK ALVLIAFAQYLQQCPFEDHVKLVNEVTEFAK
66Peptide Candidate Filtering
- Peptide molecular weight
- Only have m/z value
- Need to determine charge state
- Ion selection tolerance
- Mass for each amino-acid symbol?
- Monoisotopic vs. Average
- Default residual mass
- Depends on sample preparation protocol
- Cysteine almost always modified
67Peptide Molecular Weight
i0
Same peptide,i of C13 isotope
i1
i2
i3
i4
68Peptide Molecular Weight
i0
Same peptide,i of C13 isotope
i1
i2
i3
i4
69Peptide Molecular Weight
from Isotopes An IonSource.Com Tutorial
70Peptide Molecular Weight
- Peptide sequence WVTFISLLFLFSSAYSR
- Potential phosphorylation?
- S,T,Y 80 Da
WVTFISLLFLFSSAYSR 2018.06
WVTFISLLFLFSSAYSR 2098.06
WVTFISLLFLFSSAYSR 2098.06
WVTFISLLFLFSSAYSR 2098.06
WVTFISLLFLFSSAYSR 2098.06
WVTFISLLFLFSSAYSR 2098.06
WVTFISLLFLFSSAYSR 2098.06
WVTFISLLFLFSSAYSR 2178.06
WVTFISLLFLFSSAYSR 2178.06
WVTFISLLFLFSSAYSR 2418.06
- 7 Molecular Weights
- 64 Peptides
71Peptide Scoring
- Peptide fragments vary based on
- The instrument
- The peptides amino-acid sequence
- The peptides charge state
- Etc
- Search engines model peptide fragmentation to
various degrees. - Speed vs. sensitivity tradeoff
- y-ions b-ions occur most frequently
72Mascot Search Engine
73Mascot MS/MS Ions Search
74Sequence Database SearchTraps and Pitfalls
- Search options may eliminate the correct peptide
- Parent mass tolerance too small
- Fragment m/z tolerance too small
- Incorrect parent ion charge state
- Non-tryptic or semi-tryptic peptide
- Incorrect or unexpected modification
- Sequence database too conservative
- Unreliable taxonomy annotation
75Sequence Database SearchTraps and Pitfalls
- Search options can cause infinite search times
- Variable modifications increase search times
exponentially - Non-tryptic search increases search time by two
orders of magnitude - Large sequence databases contain many irrelevant
peptide candidates
76Sequence Database SearchTraps and Pitfalls
- Best available peptide isnt necessarily correct!
- Score statistics (e-values) are essential!
- What is the chance a peptide could score this
well by chance alone? - The wrong peptide can look correct if the right
peptide is missing! - Need scores (or e-values) that are invariant to
spectrum quality and peptide properties
77Sequence Database SearchTraps and Pitfalls
- Search engines often make incorrect assumptions
about sample prep - Proteins with lots of identified peptides are not
more likely to be present - Peptide identifications do not represent
independent observations - All proteins are not equally interesting to report
78Sequence Database SearchTraps and Pitfalls
- Good spectral processing can make a big
difference - Poorly calibrated spectra require large m/z
tolerances - Poorly baselined spectra make small peaks hard to
believe - Poorly de-isotoped spectra have extra peaks and
misleading charge state assignments
79Summary
- Protein identification from tandem mass spectra
is a key proteomics technology. - Protein identifications should be treated with
healthy skepticism. - Look at all the evidence!
- Spectra remain unidentified for a variety of
reasons. - Lots of open algorithmic problems!
80Further Reading
- Matrix Science (Mascot) Web Site
- www.matrixscience.com
- Seattle Proteome Center (ISB)
- www.proteomecenter.org
- Proteomic Mass Spectrometry Lab at The Scripps
Research Institute - fields.scripps.edu
- UCSF ProteinProspector
- prospector.ucsf.edu