Title: The Accumulator/Pre-Booster
1The Accumulator/Pre-Booster
- Bela Erdelyi
- Department of Physics, Northern Illinois
University, - and Physics Division, Argonne National Laboratory
2Acknowledgements
- Joint Work with
- Shashikant Manikonda (ANL)
- Peter Ostroumov (ANL)
- Sumana Abeyratne (NIU student)
- With assistance from JLab staff (Y. Derbenev, Y.
Zhang, G. Krafft, etc.)
3ELIC Conceptual Layout
4Accumulator/Pre-Booster Concept
- Purpose
- Inject from linac
- Accumulate ions
- Accelerate them
- Extract and send to large booster
- Concepts
- Figure-8 shape for ease of spin transport,
manipulation and preservation - Modular design, with (quasi)independent module
design optimization - FODO arcs for simplicity and ease of
implementation of optics correction schemes - No dispersion suppressors
- Matched injection insertion
- Triplet straights for long dispersion-less drifts
and round beam - Matching/tuning modules in between
5Constraints
- Figure-8 shaped circumference 200-300 m
- Maximum bending field 1.5 T
- Maximum quadrupole gradient 20 T/m
- Momentum compaction smaller than 1/25
- Maximum beta functions less than 35 m
- Maximum full beam size less than 2.5 cm, and 1 cm
vertically in dipoles - 5m m long dispersion-less sections for RF
cavities, electron cooling, collimation,
extraction, and possibly decoupling - Sizable (normalized) dispersion for/at injection
- Working point chosen such that tune footprint
does not cross low order resonances (tunability)
6Injection
- Protons (and possibly light ions)
- Stripping injection
- Heavy ions
- Repeated multi-turn injection
- Transverse (horizontal and possibly also
vertical) and longitudinal painting - Electron cooling for stacking/accumulation
7Heavy-Ion Injection and Accumulation
8Electron Cooling
9Accumulated Beam
- Intensities needed to achieve design luminosity,
with some safety factors included for possible
losses during - Stripping
- Capturing, re-capturing
- Transfers
- Proton current 1A (6x1012 total particles in
the ring) - Heavy-ion current 0.5 A (1x1011 total particles
in the ring) gt 10 linac pulses of 250 µs
length (subject to optimization)
10Acceleration
- h1
- RF swing necessary is 0.4,2 MHz
- 4 kV per cavity
- 50kV/turn gt 12-13 cavities
- Synchronous phase -30
- 65000 turns for 200MeV -gt 3 GeV
- 100 ms acceleration time
- Allows acceleration with h2 with the same
cavities, if needed
11LEIR-Type Cavities
- Finemet cavities
- 0.5 m long
- 4kV/cavity
- 0.35,5 MHz frequency swing
- Practically no maintenance needed
12Extraction and stripping
- Conventional single-turn fast extraction
- To minimize heavy-ion loss, strip once in linac
and once after the pre-booster to maximize fully
stripped fraction - Advantages
- Less beam-loss to reach fully stripped state
- Less severe space charge in pre-booster
- Drawback lose some energy gain
13Layout
To Large Booster
ARC 1
Collimation
Electron Cooling
Extraction
Non dispersive section 1
Injection Insertion section
ARC 3
Non dispersive section 2
ARC 2
RF Cavities
Beam from LINAC
Solenoids for Electron Cooling and Decoupling
14Circumference
Total length of the long drifts in the straights
20m
15Linear Optics
Arc 2
Arc 1
Straight 2
Arc 3
Injection
Straight 1
16Optical modules
ARC3 FODO
ARC12 FODO
INJECTION INSERT
STRAIGHT TRIPLET
17Matching/Tuning modules
18Tunability
19Main Parameters
Units Value
1 Circumference m 302
2 Angle at crossing deg 44
3 Number of dispersive FODO cells (Type I) 6
4 Number of dispersive FODO cells (Type II) 8
5 Number of triplet cells 18
6 Number of matching cells (2 types) 4
7 Minimum drift length between magnets cm 50
8 Drift length in the injection insertion m 5.0
9 Drift lengths between triplets (for RF, extraction, collimation and electron cooling) m 5.3
10 Beta maximum in X m 33
11 Beta maximum in Y m 36
12 Maximum beam size cm 2.3
12 Maximum vertical beam size in the dipole magnets cm 0.6
13 Maximum dispersion (xdelta_KE) m 3.3
14 Normalized dispersion value at injection insert m½ 2.1
15 Tune in X 7.92
16 Tune in Y 7.24
17 Gamma of particle 4.22
18 Gamma at transition energy 5.6
19 Momentum compaction 3.2E-2
20Magnets
Quantity Parameters Units Value
1 Quadrupole Magnets 113
Length cm 40
Half aperture cm 5
Maximum pole tip field T 1.5
Minimum pole tip field T 0.15
2 Dipole Magnets (Type I) 16
Strength T 1.41
Radius m 9.0
Vertical aperture cm 3.0
Angle deg 11.6
Length m 1.83
3 Dipole Magnets (Type II) 18
Strength T 1.41
Radius m 9.0
Vertical aperture cm 3.0
Angle deg 14.0
Length m 2.19
20
21Beam Parameters at the End of the Pre-Booster
Cycle
Proton Lead
Beam energy GeV 3 1.18
Particles number 1012 6 0.1
Beam Current A 1 0.5
Polarization gt90 (est.) N/A
Energy spread 10-4 ? ?
Bunch length m 63 63
Horizontal acceptance, normalized µm rad 55 28
Vertical acceptance, normalized µm rad 37 12
Laslett tune shift (after injection) 0.071 0.015
22Pre-Booster Cycle Time
- Assuming 1x1011 lead ions need to be accumulated
- One 250 µs long linac pulse (subject to
optimization) delivers 0.5 mA - Assume 50 injection efficiency (CERN
experience) - gt 9 linac pulses
- Cooling time estimated to be 130ms
- gt Total time
- 9x 250 µs (injection)
- 9x130 ms (cooling)
- 2x100 ms (acceleration and de-ramping)
- 1.4 s
- Assuming factor of 4 ratio between circumferences
between pre-booster and large booster, and
acceleration with -30 gt 16 cycling times needed
to fill the large booster gt 22s (3s for p) - Large booster starts with coasting beam
23Summary and Work in Progress
- Design of the accumulator/pre-booster is well
underway - Satisfies the constraints while providing
superior performance - Fine tuning first order optics
- Space charge simulations limits on current and
emittance - Spin tracking, polarization preservation studies
- Dynamic aperture estimation
24BACKUP SLIDES
25Cooling times
- Assuming
- 3 m long cooling section
- 300 mA electron current
- 2.5 cm beam radius
- 5 mrad beam divergence
- 0.004 momentum dispersion
- Cooling for 3 time constants
- Transverse cooling time 130 ms
- Longitudinal cooling time 67 ms
- Cooling electron energies
- _at_ injection 0.55394 MeV, ?2.0840
- _at_ extraction 1.15511 MeV, ?3.2605
26Lead Charge Distributions
- _at_ injection
- Q (0) Q (1) Q (2) Q (3) Q (4)
- 0 4 70 22 3
- _at_ extraction
- Q (0) Q (1)
- 80 20
27Shorter Version (C250m)
28Linear Optics
29Optical Modules
30Main Parameters
Units Value
1 Total length m 254
2 Angle at crossing deg 62
3 Number of dispersive FODO cells (Type I) 6
4 Number of dispersive FODO cells (Type II) 9
5 Number of triplet cells 10
6 Number of matching cells 4
7 Minimum drift length between magnets cm 50
8 Drift lengths in the insertion region m 5.0
9 Drift lengths between triplets (for RF, collimation and electron cooling) m 5.0
10 Beta maximum in X m 19
11 Beta maximum in Y m 34
12 Maximum beam size cm 2.0
12 Maximum beam size in the dipole magnets cm 0.6
13 Maximum Dispersion (xdelta_KE) 2.5
14 Normalized dispersion value at injection (xd_KE)/vß 1.41
15 Tune in X 8.33
16 Tune in Y 7.43
17 Gamma of particle 4.22
18 Gamma at Transition Energy 5.62
19 Momentum compaction factor 0.031
31Magnets
Quantity Parameters Units Value
1 Quadrupole Magnet 95
Length cm 40
Half aperture cm 5
Maximum pole tip field T 1.5
Minimum pole tip field T 0.16
2 Dipole Magnet (Type I) 6
Strength T 1.41
Radius m 9
Vertical aperture cm 3
Angle deg 14
Length m 2.19
3 Dipole Magnet (Type II) 12
Strength T 1.41
Radius m 9
Vertical aperture cm 3
Angle deg 13.17
Length m 2.06
4 Dipole Magnet (Type III) 18
Strength T 1.41
Radius m 9
Vertical aperture cm 3
Angle deg 13.44
Length m 2.11
32Laslett Tune Shift (protons)
- Beta0.57
- Gamma1.21
- Nt(total)5.36E12
- rc 1.53E-18m
- EN(normalized)BetaGamma9E-6 m.rad
- BF1 (Peak to average current radio)
- laslett_tune_shift-(NtrcBf)/(4piENbetagamma
2) - laslett_tune_shift-0.071.
33Laslett Tune Shift (Lead)
- Beta0.37
- Gamma1.08
- Nt(total)4.33E10
- rc 1.53E-18m
- EN(normalized)BetaGamma17.5E-6 m.rad
- BF1 (Peak to average current radio)
- laslett_tune_shift-(NtrcBfQ2)/(4piENMbeta
gamma2) - laslett_tune_shift-0.015.