The Accumulator/Pre-Booster - PowerPoint PPT Presentation

About This Presentation
Title:

The Accumulator/Pre-Booster

Description:

The Accumulator/Pre-Booster Bela Erdelyi Department of Physics, Northern Illinois University, and Physics Division, Argonne National Laboratory – PowerPoint PPT presentation

Number of Views:65
Avg rating:3.0/5.0
Slides: 34
Provided by: sthomas
Learn more at: https://casa.jlab.org
Category:

less

Transcript and Presenter's Notes

Title: The Accumulator/Pre-Booster


1
The Accumulator/Pre-Booster
  • Bela Erdelyi
  • Department of Physics, Northern Illinois
    University,
  • and Physics Division, Argonne National Laboratory

2
Acknowledgements
  • Joint Work with
  • Shashikant Manikonda (ANL)
  • Peter Ostroumov (ANL)
  • Sumana Abeyratne (NIU student)
  • With assistance from JLab staff (Y. Derbenev, Y.
    Zhang, G. Krafft, etc.)

3
ELIC Conceptual Layout
4
Accumulator/Pre-Booster Concept
  • Purpose
  • Inject from linac
  • Accumulate ions
  • Accelerate them
  • Extract and send to large booster
  • Concepts
  • Figure-8 shape for ease of spin transport,
    manipulation and preservation
  • Modular design, with (quasi)independent module
    design optimization
  • FODO arcs for simplicity and ease of
    implementation of optics correction schemes
  • No dispersion suppressors
  • Matched injection insertion
  • Triplet straights for long dispersion-less drifts
    and round beam
  • Matching/tuning modules in between

5
Constraints
  • Figure-8 shaped circumference 200-300 m
  • Maximum bending field 1.5 T
  • Maximum quadrupole gradient 20 T/m
  • Momentum compaction smaller than 1/25
  • Maximum beta functions less than 35 m
  • Maximum full beam size less than 2.5 cm, and 1 cm
    vertically in dipoles
  • 5m m long dispersion-less sections for RF
    cavities, electron cooling, collimation,
    extraction, and possibly decoupling
  • Sizable (normalized) dispersion for/at injection
  • Working point chosen such that tune footprint
    does not cross low order resonances (tunability)

6
Injection
  • Protons (and possibly light ions)
  • Stripping injection
  • Heavy ions
  • Repeated multi-turn injection
  • Transverse (horizontal and possibly also
    vertical) and longitudinal painting
  • Electron cooling for stacking/accumulation

7
Heavy-Ion Injection and Accumulation
8
Electron Cooling
9
Accumulated Beam
  • Intensities needed to achieve design luminosity,
    with some safety factors included for possible
    losses during
  • Stripping
  • Capturing, re-capturing
  • Transfers
  • Proton current 1A (6x1012 total particles in
    the ring)
  • Heavy-ion current 0.5 A (1x1011 total particles
    in the ring) gt 10 linac pulses of 250 µs
    length (subject to optimization)

10
Acceleration
  • h1
  • RF swing necessary is 0.4,2 MHz
  • 4 kV per cavity
  • 50kV/turn gt 12-13 cavities
  • Synchronous phase -30
  • 65000 turns for 200MeV -gt 3 GeV
  • 100 ms acceleration time
  • Allows acceleration with h2 with the same
    cavities, if needed

11
LEIR-Type Cavities
  • Finemet cavities
  • 0.5 m long
  • 4kV/cavity
  • 0.35,5 MHz frequency swing
  • Practically no maintenance needed

12
Extraction and stripping
  • Conventional single-turn fast extraction
  • To minimize heavy-ion loss, strip once in linac
    and once after the pre-booster to maximize fully
    stripped fraction
  • Advantages
  • Less beam-loss to reach fully stripped state
  • Less severe space charge in pre-booster
  • Drawback lose some energy gain

13
Layout
To Large Booster
ARC 1
Collimation
Electron Cooling
Extraction
Non dispersive section 1
Injection Insertion section
ARC 3
Non dispersive section 2
ARC 2
RF Cavities
Beam from LINAC
Solenoids for Electron Cooling and Decoupling
14
Circumference
Total length of the long drifts in the straights
20m
15
Linear Optics
Arc 2
Arc 1
Straight 2
Arc 3
Injection
Straight 1
16
Optical modules
ARC3 FODO
ARC12 FODO
INJECTION INSERT
STRAIGHT TRIPLET
17
Matching/Tuning modules
18
Tunability
19
Main Parameters
Units Value
1 Circumference m 302
2 Angle at crossing deg 44
3 Number of dispersive FODO cells (Type I) 6
4 Number of dispersive FODO cells (Type II) 8
5 Number of triplet cells 18
6 Number of matching cells (2 types) 4
7 Minimum drift length between magnets cm 50
8 Drift length in the injection insertion m 5.0
9 Drift lengths between triplets (for RF, extraction, collimation and electron cooling) m 5.3
10 Beta maximum in X m 33
11 Beta maximum in Y m 36
12 Maximum beam size cm 2.3
12 Maximum vertical beam size in the dipole magnets cm 0.6
13 Maximum dispersion (xdelta_KE) m 3.3
14 Normalized dispersion value at injection insert m½ 2.1
15 Tune in X 7.92
16 Tune in Y 7.24
17 Gamma of particle 4.22
18 Gamma at transition energy 5.6
19 Momentum compaction 3.2E-2
20
Magnets
Quantity Parameters Units Value
1 Quadrupole Magnets 113
Length cm 40
Half aperture cm 5
Maximum pole tip field T 1.5
Minimum pole tip field T 0.15
2 Dipole Magnets (Type I) 16
Strength T 1.41
Radius m 9.0
Vertical aperture cm 3.0
Angle deg 11.6
Length m 1.83
3 Dipole Magnets (Type II) 18
Strength T 1.41
Radius m 9.0
Vertical aperture cm 3.0
Angle deg 14.0
Length m 2.19
20
21
Beam Parameters at the End of the Pre-Booster
Cycle
Proton Lead
Beam energy GeV 3 1.18
Particles number 1012 6 0.1
Beam Current A 1 0.5
Polarization gt90 (est.) N/A
Energy spread 10-4 ? ?
Bunch length m 63 63
Horizontal acceptance, normalized µm rad 55 28
Vertical acceptance, normalized µm rad 37 12
Laslett tune shift (after injection) 0.071 0.015
22
Pre-Booster Cycle Time
  • Assuming 1x1011 lead ions need to be accumulated
  • One 250 µs long linac pulse (subject to
    optimization) delivers 0.5 mA
  • Assume 50 injection efficiency (CERN
    experience)
  • gt 9 linac pulses
  • Cooling time estimated to be 130ms
  • gt Total time
  • 9x 250 µs (injection)
  • 9x130 ms (cooling)
  • 2x100 ms (acceleration and de-ramping)
  • 1.4 s
  • Assuming factor of 4 ratio between circumferences
    between pre-booster and large booster, and
    acceleration with -30 gt 16 cycling times needed
    to fill the large booster gt 22s (3s for p)
  • Large booster starts with coasting beam

23
Summary and Work in Progress
  • Design of the accumulator/pre-booster is well
    underway
  • Satisfies the constraints while providing
    superior performance
  • Fine tuning first order optics
  • Space charge simulations limits on current and
    emittance
  • Spin tracking, polarization preservation studies
  • Dynamic aperture estimation

24
BACKUP SLIDES
25
Cooling times
  • Assuming
  • 3 m long cooling section
  • 300 mA electron current
  • 2.5 cm beam radius
  • 5 mrad beam divergence
  • 0.004 momentum dispersion
  • Cooling for 3 time constants
  • Transverse cooling time 130 ms
  • Longitudinal cooling time 67 ms
  • Cooling electron energies
  • _at_ injection 0.55394 MeV, ?2.0840
  • _at_ extraction 1.15511 MeV, ?3.2605

26
Lead Charge Distributions
  • _at_ injection
  • Q (0) Q (1) Q (2) Q (3) Q (4)
  • 0 4 70 22 3
  • _at_ extraction
  • Q (0) Q (1)
  • 80 20

27
Shorter Version (C250m)
28
Linear Optics
29
Optical Modules
30
Main Parameters
Units Value
1 Total length m 254
2 Angle at crossing deg 62
3 Number of dispersive FODO cells (Type I) 6
4 Number of dispersive FODO cells (Type II) 9
5 Number of triplet cells 10
6 Number of matching cells 4
7 Minimum drift length between magnets cm 50
8 Drift lengths in the insertion region m 5.0
9 Drift lengths between triplets (for RF, collimation and electron cooling) m 5.0
10 Beta maximum in X m 19
11 Beta maximum in Y m 34
12 Maximum beam size cm 2.0
12 Maximum beam size in the dipole magnets cm 0.6
13 Maximum Dispersion (xdelta_KE) 2.5
14 Normalized dispersion value at injection (xd_KE)/vß 1.41
15 Tune in X 8.33
16 Tune in Y 7.43
17 Gamma of particle 4.22
18 Gamma at Transition Energy 5.62
19 Momentum compaction factor 0.031
31
Magnets
    Quantity Parameters Units Value
1 Quadrupole Magnet 95      
      Length cm 40
      Half aperture cm 5
      Maximum pole tip field T 1.5
      Minimum pole tip field T 0.16
2 Dipole Magnet (Type I) 6      
      Strength T 1.41
      Radius m 9
      Vertical aperture cm 3
      Angle deg 14
      Length m 2.19
3 Dipole Magnet (Type II) 12      
      Strength T 1.41
      Radius m 9
      Vertical aperture cm 3
      Angle deg 13.17
      Length m 2.06
4 Dipole Magnet (Type III) 18      
      Strength T 1.41
      Radius m 9
      Vertical aperture cm 3
      Angle deg 13.44
      Length m 2.11
32
Laslett Tune Shift (protons)
  • Beta0.57
  • Gamma1.21
  • Nt(total)5.36E12
  • rc  1.53E-18m
  • EN(normalized)BetaGamma9E-6 m.rad
  • BF1 (Peak to average current radio)
  • laslett_tune_shift-(NtrcBf)/(4piENbetagamma
    2)
  • laslett_tune_shift-0.071.

33
Laslett Tune Shift (Lead)
  • Beta0.37
  • Gamma1.08
  • Nt(total)4.33E10
  • rc  1.53E-18m
  • EN(normalized)BetaGamma17.5E-6 m.rad
  • BF1 (Peak to average current radio)
  • laslett_tune_shift-(NtrcBfQ2)/(4piENMbeta
    gamma2)
  • laslett_tune_shift-0.015.
Write a Comment
User Comments (0)
About PowerShow.com