GE Medical Systems Template - Confidential - PowerPoint PPT Presentation

1 / 31
About This Presentation
Title:

GE Medical Systems Template - Confidential

Description:

SK Patch, UW-Milwaukee Images across modalities Prototype TCT already competes w/conventional scans! EIT 4cm MRI slice US TCT slice Xray projection – PowerPoint PPT presentation

Number of Views:104
Avg rating:3.0/5.0
Slides: 32
Provided by: GEM64
Learn more at: http://www.uwec.edu
Category:

less

Transcript and Presenter's Notes

Title: GE Medical Systems Template - Confidential


1
Thermoacoustic Tomography SK Patch, UW-Milwaukee
Images across modalities
Prototype TCT already competes w/conventional
scans!
EIT
TransScan RD
qualitative potentially quantitative
2
Outline
  • Intro
  • Physics
  • Measured data
  • Ties to wave equation
  • Recon Background
  • Xray CT
  • Spherical Transforms
  • Inversion Formulae for complete data
  • r-filtered
  • FBP
  • Inverting incomplete data

NIR diffuses. . .
3
Thermoacoustics (Kruger, Wang, . . . )
breast
waveguides
contrast c(RF absorbtion, tissue elasticity,
more)
contrast c(RF absorbtion, tissue elasticity,

Kruger, Stantz, Kiser. Proc. SPIE 2002.
? RF/NIR heating ? ? thermal expansion ? ?
pressure waves ? ? US signal
4
Measured Data (assumes constant soundspeed)
S upper hemisphere
inadmissable transducer
  • Integrate f over spheres
  • Centers of spheres on sphere
  • Partial data only for mammography

S- lower hemisphere
5
Ties to the Wave Equation
t
t0 x?Rn
supp f
in Rn
6
Outline
supp f
  • Intro
  • Physics
  • Measured data
  • Ties to wave equation
  • Recon Background
  • Xray CT
  • Spherical Transforms
  • Inversion Formulae for complete data
  • r-filtered
  • FBP
  • Inverting incomplete data
  • Xray CT measure line integrals
  • 2D
  • 3D
  • Grangeat
  • line ? ? plane ?
  • plane ? ? recond image
  • Katsevich
  • line ? ? recond image

supp f
7
Outline
  • Spherical Transforms
  • 2D
  • Circles centered on lines
  • Circles through a point
  • Intro
  • Physics
  • Measured data
  • Ties to wave equation
  • Recon Background
  • Xray CT
  • Spherical Transforms
  • Inversion Formulae for complete data
  • r-filtered
  • FBP
  • Inverting incomplete data
  • 3D
  • Spheres centered on plane
  • Spheres through a point

8
Outline
  • Spherical Transforms
  • 2D
  • Circles centered on circles (Norton)
  • Intro
  • Physics
  • Measured data
  • Ties to wave equation
  • Recon Background
  • Xray CT
  • Spherical Transforms
  • Inversion Formulae for complete data
  • r-filtered
  • FBP
  • Inverting incomplete data
  • 3D
  • Spheres centered on sphere(Norton Linzer,
    approximate inversion for complete data)

9
r-filtered inversion (complete data)
  • Backproject data (thanks to V. Palamodov!)
  • Switch order of integration
  • Use d-manifold identity (4x!) ?
  • f ?Riesz potential ?
  • f after high-pass filter

imaging object
Use co-area formula
10
r-filtered inversion (complete data)
x
p
11
r-filtered inversion (d-identity)
y
x
h
12
Inversion Formulae (complete data)
13
Implementation
  • differentiate and interpolate wrt r ? Dr Dx/2
  • integrate over pp(q,f)?S2
  • Gaussian wrt q?0,p)
  • Trapezoid wrt f?0,2p)

Dr determines resolution Dq, Df determine
artifact
14
Numerical Results 256x256 images from
(Nf,Nq,Nr) (800,400,512)
FBP with 1/r weighting
without 1/r weighting
Gaik Ambartsoumian
greyscale 0.9, 1.1
greyscale 0.9, 1.8
15
Partial Scan Reconstructions Low Contrast
Detectability
FBP with ½ data in q grayscale 0.4, 1.0
FBP with full data in q grayscale 0.9, 1.1
16
Consistency Conditions Necessary, but not
sufficient
trivial derivation, nontrivial implication
17
Consistency Conditions Implications
measure ck on S- evaluate ck on S
18
Polynomial Extrapolation Stability
f1
f0
Measure over p3?-1,0)
  • rescale so q3?-1,1)
  • fit measurements to another set of Leg. polys

deg 24
P2
19
(No Transcript)
20
½ scan reconstruction zero-filling vs. data
extension with respect to z-only
21
½ scan FBP reconstruction 0.2 absolute
additive white noise zero-filling vs.data
extension
window width 1.2
22
(No Transcript)
23
Heuristic Image Quality Impact
DISCLAIMER WIP sans dispersion
use 2D xray transform exploit projection-slice
Ideal Object/Full Scan
Attenuation-Full Scan
24
XR beam hardening vs US attenuation
25
Image Quality Impact
Recon of Markus attenuated data using
son-of-Gaiks code
Xray CT beam hardening vs TCT pulse softening
26
Attenuation Dispersion
b1.10
b1.05
Waters, et al, JASA 2000
b1
Cfat 1460 Cblood 1560 Cskull 4080
a0 10-7 MHz -1 cm-1 w0 107 MHz
27
GOAL biannual screening TCT for small
low-contrast masses xrays miss. Xrays for
precursors (microcalcs)
  • non-Math Conclusions
  • Positives
  • cheap ??
  • non-ionizing
  • high-res (exploits hyperbolic physics)
  • 2x depth penetration of ultrasound, sans speckle
  • detect masses
  • Issues
  • will not detect microcalcifications
  • contrast mechanism not understood
  • fundamental physics (attenuation, etc) and HW
    constraints will impact IQ

28
GOAL 1 Incorporate fundamental physics GOAL 2
incorporate hardware constraints
  • Math Conclusions
  • FBP type inversion formulae
  • Partial scan - unstable outside of audible
    zone, OK inside
  • Palamodov
  • Davison Grunbaum
  • Anastasio et al , Xu et al OK inside
  • SVD perhaps better way Alexsei???
  • Attenuation expect blurring, dispersion may be
    a factor
  • cos q transducer response Finch

29
References Incomplete List
  • Xu, Wang, IEEE TMI, 2002 21(7).
  • Louis, Quinto, Surveys on solution methods for
    inverse problems, 2000.
  • Agranovsky, Quinto, J. Functional Analysis,
    1996 139.
  • Agranovsky, Quinto, Duke Math J., 2001 107(1).
  • Uhlmann, Duke Math J., 1989 58(1).
  • Finch, Patch, Rakesh, SIAM J. Math Anal. 2004
    35(5).
  • Patch, Phys in Med. Bio, submitted.
  • Kruger, et. al.
  • Radiology 2000 216.
  • Radiology 1999 211.
  • Med. Phys. 1999 26(9).
  • Math/physics
  • Joines, Zhang, Li, Jirtle, Med. Phys. 1994
    21(4).
  • Norton, Linzer, IEEE Trans. BME 1981 BME-28.
  • Norton, J. Acoust. Soc. Am. 1980 67(4).

30
measure
Wave Fronts in Standard CT
so
31
Wave Fronts in TCT
Write a Comment
User Comments (0)
About PowerShow.com