Title: GE Medical Systems Template - Confidential
1Thermoacoustic Tomography SK Patch, UW-Milwaukee
Images across modalities
Prototype TCT already competes w/conventional
scans!
EIT
TransScan RD
qualitative potentially quantitative
2Outline
- Intro
- Physics
- Measured data
- Ties to wave equation
- Recon Background
- Xray CT
- Spherical Transforms
- Inversion Formulae for complete data
- r-filtered
- FBP
- Inverting incomplete data
NIR diffuses. . .
3Thermoacoustics (Kruger, Wang, . . . )
breast
waveguides
contrast c(RF absorbtion, tissue elasticity,
more)
contrast c(RF absorbtion, tissue elasticity,
Kruger, Stantz, Kiser. Proc. SPIE 2002.
? RF/NIR heating ? ? thermal expansion ? ?
pressure waves ? ? US signal
4Measured Data (assumes constant soundspeed)
S upper hemisphere
inadmissable transducer
- Integrate f over spheres
- Centers of spheres on sphere
- Partial data only for mammography
S- lower hemisphere
5Ties to the Wave Equation
t
t0 x?Rn
supp f
in Rn
6Outline
supp f
- Intro
- Physics
- Measured data
- Ties to wave equation
- Recon Background
- Xray CT
- Spherical Transforms
- Inversion Formulae for complete data
- r-filtered
- FBP
- Inverting incomplete data
- Xray CT measure line integrals
- 2D
- 3D
- Grangeat
- line ? ? plane ?
- plane ? ? recond image
- Katsevich
- line ? ? recond image
supp f
7Outline
- Spherical Transforms
- 2D
- Circles centered on lines
- Circles through a point
- Intro
- Physics
- Measured data
- Ties to wave equation
- Recon Background
- Xray CT
- Spherical Transforms
- Inversion Formulae for complete data
- r-filtered
- FBP
- Inverting incomplete data
- 3D
- Spheres centered on plane
- Spheres through a point
8Outline
- Spherical Transforms
- 2D
- Circles centered on circles (Norton)
- Intro
- Physics
- Measured data
- Ties to wave equation
- Recon Background
- Xray CT
- Spherical Transforms
- Inversion Formulae for complete data
- r-filtered
- FBP
- Inverting incomplete data
- 3D
- Spheres centered on sphere(Norton Linzer,
approximate inversion for complete data)
9r-filtered inversion (complete data)
- Backproject data (thanks to V. Palamodov!)
- Switch order of integration
- Use d-manifold identity (4x!) ?
- f ?Riesz potential ?
- f after high-pass filter
imaging object
Use co-area formula
10r-filtered inversion (complete data)
x
p
11r-filtered inversion (d-identity)
y
x
h
12Inversion Formulae (complete data)
13Implementation
- differentiate and interpolate wrt r ? Dr Dx/2
- integrate over pp(q,f)?S2
- Gaussian wrt q?0,p)
- Trapezoid wrt f?0,2p)
Dr determines resolution Dq, Df determine
artifact
14Numerical Results 256x256 images from
(Nf,Nq,Nr) (800,400,512)
FBP with 1/r weighting
without 1/r weighting
Gaik Ambartsoumian
greyscale 0.9, 1.1
greyscale 0.9, 1.8
15Partial Scan Reconstructions Low Contrast
Detectability
FBP with ½ data in q grayscale 0.4, 1.0
FBP with full data in q grayscale 0.9, 1.1
16Consistency Conditions Necessary, but not
sufficient
trivial derivation, nontrivial implication
17Consistency Conditions Implications
measure ck on S- evaluate ck on S
18Polynomial Extrapolation Stability
f1
f0
Measure over p3?-1,0)
- rescale so q3?-1,1)
- fit measurements to another set of Leg. polys
deg 24
P2
19(No Transcript)
20 ½ scan reconstruction zero-filling vs. data
extension with respect to z-only
21 ½ scan FBP reconstruction 0.2 absolute
additive white noise zero-filling vs.data
extension
window width 1.2
22(No Transcript)
23Heuristic Image Quality Impact
DISCLAIMER WIP sans dispersion
use 2D xray transform exploit projection-slice
Ideal Object/Full Scan
Attenuation-Full Scan
24XR beam hardening vs US attenuation
25Image Quality Impact
Recon of Markus attenuated data using
son-of-Gaiks code
Xray CT beam hardening vs TCT pulse softening
26Attenuation Dispersion
b1.10
b1.05
Waters, et al, JASA 2000
b1
Cfat 1460 Cblood 1560 Cskull 4080
a0 10-7 MHz -1 cm-1 w0 107 MHz
27GOAL biannual screening TCT for small
low-contrast masses xrays miss. Xrays for
precursors (microcalcs)
- non-Math Conclusions
- Positives
- cheap ??
- non-ionizing
- high-res (exploits hyperbolic physics)
- 2x depth penetration of ultrasound, sans speckle
- detect masses
- Issues
- will not detect microcalcifications
- contrast mechanism not understood
- fundamental physics (attenuation, etc) and HW
constraints will impact IQ
28GOAL 1 Incorporate fundamental physics GOAL 2
incorporate hardware constraints
- Math Conclusions
- FBP type inversion formulae
- Partial scan - unstable outside of audible
zone, OK inside - Palamodov
- Davison Grunbaum
- Anastasio et al , Xu et al OK inside
- SVD perhaps better way Alexsei???
- Attenuation expect blurring, dispersion may be
a factor
- cos q transducer response Finch
29References Incomplete List
- Xu, Wang, IEEE TMI, 2002 21(7).
- Louis, Quinto, Surveys on solution methods for
inverse problems, 2000. - Agranovsky, Quinto, J. Functional Analysis,
1996 139. - Agranovsky, Quinto, Duke Math J., 2001 107(1).
- Uhlmann, Duke Math J., 1989 58(1).
- Finch, Patch, Rakesh, SIAM J. Math Anal. 2004
35(5). - Patch, Phys in Med. Bio, submitted.
- Kruger, et. al.
- Radiology 2000 216.
- Radiology 1999 211.
- Med. Phys. 1999 26(9).
- Math/physics
- Joines, Zhang, Li, Jirtle, Med. Phys. 1994
21(4). - Norton, Linzer, IEEE Trans. BME 1981 BME-28.
- Norton, J. Acoust. Soc. Am. 1980 67(4).
30measure
Wave Fronts in Standard CT
so
31Wave Fronts in TCT