Title: CS 5263 Bioinformatics
1CS 5263 Bioinformatics
- Lectures 3-6 Pair-wise Sequence Alignment
2Outline
- Part I Algorithms
- Biological problem
- Intro to dynamic programming
- Global sequence alignment
- Local sequence alignment
- More efficient algorithms
- Part II Biological issues
- Model gaps more accurately
- Alignment statistics
- Part III BLAST
3Evolution at the DNA level
C
ACGGTGCAGTCACCA
ACGTTGC-GTCCACCA
DNA evolutionary events (sequence
edits) Mutation, deletion, insertion
4Sequence conservation implies function
next generation
OK
OK
OK
X
X
Still OK?
5Why sequence alignment?
- Conserved regions are more likely to be
functional - Can be used for finding genes, regulatory
elements, etc. - Similar sequences often have similar origin and
function - Can be used to predict functions for new genes /
proteins - Sequence alignment is one of the most widely used
computational tools in biology
6Global Sequence Alignment
AGGCTATCACCTGACCTCCAGGCCGATGCCC TAGCTATCACGACCGCGG
TCGATTTGCCCGAC
S
T
-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC--- TAG-CTATCAC-
-GACCGC--GGTCGATTTGCCCGAC
S
T
- Definition
- An alignment of two strings S, T is a pair of
strings S, T (with spaces) s.t. - S T, and (S length of S)
- removing all spaces in S, T leaves S, T
7What is a good alignment?
- Alignment
- The best way to match the letters of one
sequence with those of the other - How do we define best?
8S -AGGCTATCACCTGACCTCCAGGCCGA--TGCCC--- T
TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC
- The score of aligning (characters or spaces) x
y is s (x,y). - Score of an alignment
- An optimal alignment one with max score
9Scoring Function
- Sequence edits
- AGGCCTC
- Mutations AGGACTC
- Insertions AGGGCCTC
- Deletions AGG-CTC
- Scoring Function
- Match m AAC
- Mismatch -s A-A
- Gap (indel) -d
10- Match 2, mismatch -1, gap -1
- Score 3 x 2 2 x 1 1 x 1 3
11More complex scoring function
- Substitution matrix
- Similarity score of matching two letters a, b
should reflect the probability of a, b derived
from the same ancestor - It is usually defined by log likelihood ratio
- Active research area. Especially for proteins.
- Commonly used PAM, BLOSUM
12An example substitution matrix
A C G T
A 3 -2 -1 -2
C 3 -2 -1
G 3 -2
T 3
13How to find an optimal alignment?
- A naïve algorithm
- for all subseqs A of S, B of T s.t. A B do
- align Ai with Bi, 1 i A
- align all other chars to spaces
- compute its value
- retain the max
- end
- output the retained alignment
S abcd A cd T wxyz B xz -abc-d
a-bc-d w--xyz -w-xyz
14Analysis
- Assume S T n
- Cost of evaluating one alignment n
- How many alignments are there
- pick n chars of S,T together
- say k of them are in S
- match these k to the k unpicked chars of T
- Total time
- E.g., for n 20, time is gt 240 gt1012 operations
15- Intro to Dynamic Programming
16Dynamic programming
- What is dynamic programming?
- A method for solving problems exhibiting the
properties of overlapping subproblems and optimal
substructure - Key idea tabulating sub-problem solutions rather
than re-computing them repeatedly - Two simple examples
- Computing Fibonacci numbers
- Find the special shortest path in a grid
17Example 1 Fibonacci numbers
- 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,
- F(0) 1
- F(1) 1
- F(n) F(n-1) f(n-2)
- How to compute F(n)?
18A recursive algorithm
- function fib(n)
- if (n 0 or n 1) return 1
- else return fib(n-1) fib(n-2)
19n/2
n
- Time complexity
- Between 2n/2 and 2n
- O(1.62n), i.e. exponential
- Why recursive Fib algorithm is inefficient?
- Overlapping subproblems
20An iterative algorithm
- function fib(n)
- F0 1 F1 1
- for i 2 to n
- Fi Fi-1 Fi-2
- Return Fn
Time complexity Time O(n), space O(n)
21Example 2 shortest path in a grid
S
m
G
n
Each edge has a length (cost). We need to get to
G from S. Can only move right or down. Aim find
a path with the minimum total length
22Optimal substructures
- Naïve algorithm enumerate all possible paths and
compare costs - Exponential number of paths
- Key observation
- If a path P(S, G) is the shortest from S to G,
any of its sub-path P(S,x), where x is on P(S,G),
is the shortest from S to x
23Proof
- Proof by contradiction
- If the path between P(S,x) is not the shortest,
i.e., P(S,x) lt P(S,x) - Construct a new path P(S,G) P(S,x) P(x, G)
- P(S,G) lt P(S,G) gt P(S,G) is not the shortest
- Contradiction
- Therefore, P(S, x) is the shortest
S
x
G
24Recursive solution
(0,0)
- Index each intersection by two indices, (i, j)
- Let F(i, j) be the total length of the shortest
path from (0, 0) to (i, j). Therefore, F(m, n) is
the shortest path we wanted. - To compute F(m, n), we need to compute both
F(m-1, n) and F(m, n-1)
m
(m, n)
n
F(m-1, n) length((m-1, n), (m, n)) F(m,
n) min F(m, n-1) length((m,
n-1), (m, n))
25Recursive solution
F(i-1, j) length((i-1, j), (i, j)) F(i, j)
min F(i, j-1) length((i, j-1), (i, j))
(0,0)
- But if we use recursive call, many subpaths will
be recomputed for many times - Strategy pre-compute F values starting from the
upper-left corner. Fill in row by row (what other
order will also do?)
(i-1, j)
(i, j)
(i, j-1)
m
(m, n)
n
26Dynamic programming illustration
S
9
1
2
3
3
12
13
15
0
5
3
3
3
3
2
5
2
3
6
8
13
15
5
2
3
3
9
3
4
2
3
2
9
7
11
13
16
6
2
3
7
4
6
3
3
3
11
14
17
20
13
4
6
3
1
3
2
3
2
1
17
17
18
20
17
G
F(i-1, j) length(i-1, j, i, j) F(i, j)
min F(i, j-1) length(i, j-1, i, j)
27Trackback
9
1
2
3
3
12
13
15
0
5
3
3
3
3
2
5
2
3
6
8
13
15
5
2
3
3
9
3
4
2
3
2
9
7
11
13
16
6
2
3
7
4
6
3
3
3
11
14
17
20
13
4
6
3
1
3
2
3
2
1
17
17
18
20
17
28Elements of dynamic programming
- Optimal sub-structures
- Optimal solutions to the original problem
contains optimal solutions to sub-problems - Overlapping sub-problems
- Some sub-problems appear in many solutions
- Memorization and reuse
- Carefully choose the order that sub-problems are
solved
29Dynamic Programming for sequence alignment
- Suppose we wish to align
- x1xM
- y1yN
- Let F(i,j) optimal score of aligning
- x1xi
- y1yj
- Scoring Function
- Match m
- Mismatch -s
- Gap (indel) -d
30Elements of dynamic programming
- Optimal sub-structures
- Optimal solutions to the original problem
contains optimal solutions to sub-problems - Overlapping sub-problems
- Some sub-problems appear in many solutions
- Memorization and reuse
- Carefully choose the order that sub-problems are
solved
31Optimal substructure
- If xi is aligned to yj in the optimal
alignment between x1..M and y1..N, then - The alignment between x1..i and y1..j is also
optimal - Easy to prove by contradiction
32Recursive solution
- Notice three possible cases
- xM aligns to yN
- xM
- yN
- 2. xM aligns to a gap
- xM
- ?
- yN aligns to a gap
- ?
- yN
m, if xM yN F(M,N)
F(M-1, N-1) -s, if not
F(M,N) F(M-1, N) - d
F(M,N) F(M, N-1) - d
33Recursive solution
- Generalize
- F(i-1, j-1) ?(Xi,Yj)
- F(i,j) max F(i-1, j) d
- F(i, j-1) d
- ?(Xi,Yj) m if Xi Yj, and s otherwise
- Boundary conditions
- F(0, 0) 0.
- F(0, j) ?
- F(i, 0) ?
-jd y1..j aligned to gaps.
-id x1..i aligned to gaps.
34What order to fill?
F(0,0)
F(M,N)
i
j
35What order to fill?
F(0,0)
F(M,N)
36Example
F(i-1, j-1) ?(Xi,Yj) F(i,j)
max F(i-1, j) d F(i,
j-1) d
F(i,j) i 0 1 2 3 4
A G T A
A
T
A
j 0
1
2
3
37Example
F(i-1, j-1) ?(Xi,Yj) F(i,j)
max F(i-1, j) d F(i,
j-1) d
F(i,j) i 0 1 2 3 4
A G T A
0 -1 -2 -3 -4
A -1
T -2
A -3
j 0
1
2
3
38Example
F(i-1, j-1) ?(Xi,Yj) F(i,j)
max F(i-1, j) d F(i,
j-1) d
F(i,j) i 0 1 2 3 4
A G T A
0 -1 -2 -3 -4
A -1 1 0 -1 -2
T -2
A -3
j 0
1
2
3
39Example
F(i-1, j-1) ?(Xi,Yj) F(i,j)
max F(i-1, j) d F(i,
j-1) d
F(i,j) i 0 1 2 3 4
A G T A
0 -1 -2 -3 -4
A -1 1 0 -1 -2
T -2 0 0 1 0
A -3
j 0
1
2
3
40Example
F(i-1, j-1) ?(Xi,Yj) F(i,j)
max F(i-1, j) d F(i,
j-1) d
F(i,j) i 0 1 2 3 4
A G T A
0 -1 -2 -3 -4
A -1 1 0 -1 -2
T -2 0 0 1 0
A -3 -1 -1 0 2
Optimal Alignment F(4,3) 2
j 0
1
2
3
41Example
F(i-1, j-1) ?(Xi,Yj) F(i,j)
max F(i-1, j) d F(i,
j-1) d
F(i,j) i 0 1 2 3 4
A G T A
0 -1 -2 -3 -4
A -1 1 0 -1 -2
T -2 0 0 1 0
A -3 -1 -1 0 2
Optimal Alignment F(4,3) 2 This only tells us
the best score
j 0
1
2
3
42Trace-back
F(i-1, j-1) ?(Xi,Yj) F(i,j)
max F(i-1, j) d F(i,
j-1) d
F(i,j) i 0 1 2 3 4
A G T A
0 -1 -2 -3 -4
A -1 1 0 -1 -2
T -2 0 0 1 0
A -3 -1 -1 0 2
j 0
1
A
A
2
3
43Trace-back
F(i-1, j-1) ?(Xi,Yj) F(i,j)
max F(i-1, j) d F(i,
j-1) d
F(i,j) i 0 1 2 3 4
A G T A
0 -1 -2 -3 -4
A -1 1 0 -1 -2
T -2 0 0 1 0
A -3 -1 -1 0 2
j 0
1
T A
T A
2
3
44Trace-back
F(i-1, j-1) ?(Xi,Yj) F(i,j)
max F(i-1, j) d F(i,
j-1) d
F(i,j) i 0 1 2 3 4
A G T A
0 -1 -2 -3 -4
A -1 1 0 -1 -2
T -2 0 0 1 0
A -3 -1 -1 0 2
j 0
1
G T A
- T A
2
3
45Trace-back
F(i-1, j-1) ?(Xi,Yj) F(i,j)
max F(i-1, j) d F(i,
j-1) d
F(i,j) i 0 1 2 3 4
A G T A
0 -1 -2 -3 -4
A -1 1 0 -1 -2
T -2 0 0 1 0
A -3 -1 -1 0 2
j 0
1
A G T A
A - T A
2
3
46Trace-back
F(i-1, j-1) ?(Xi,Yj) F(i,j)
max F(i-1, j) d F(i,
j-1) d
F(i,j) i 0 1 2 3 4
A G T A
0 -1 -2 -3 -4
A -1 1 0 -1 -2
T -2 0 0 1 0
A -3 -1 -1 0 2
Optimal Alignment F(4,3) 2 AGTA A?TA
j 0
1
2
3
47Using trace-back pointers
F(i,j) i 0 1 2 3 4
A G T A
0 -1 -2 -3 -4
A -1
T -2
A -3
j 0
1
2
3
48Using trace-back pointers
F(i,j) i 0 1 2 3 4
A G T A
0 -1 -2 -3 -4
A -1 1 0 -1 -2
T -2
A -3
j 0
1
2
3
49Using trace-back pointers
F(i,j) i 0 1 2 3 4
A G T A
0 -1 -2 -3 -4
A -1 1 0 -1 -2
T -2 0 0 1 0
A -3
j 0
1
2
3
50Using trace-back pointers
F(i,j) i 0 1 2 3 4
A G T A
0 -1 -2 -3 -4
A -1 1 0 -1 -2
T -2 0 0 1 0
A -3 -1 -1 0 2
j 0
1
2
3
51Using trace-back pointers
F(i,j) i 0 1 2 3 4
A G T A
0 -1 -2 -3 -4
A -1 1 0 -1 -2
T -2 0 0 1 0
A -3 -1 -1 0 2
j 0
1
2
3
52Using trace-back pointers
F(i,j) i 0 1 2 3 4
A G T A
0 -1 -2 -3 -4
A -1 1 0 -1 -2
T -2 0 0 1 0
A -3 -1 -1 0 2
j 0
1
2
3
53Using trace-back pointers
F(i,j) i 0 1 2 3 4
A G T A
0 -1 -2 -3 -4
A -1 1 0 -1 -2
T -2 0 0 1 0
A -3 -1 -1 0 2
j 0
1
2
3
54Using trace-back pointers
F(i,j) i 0 1 2 3 4
A G T A
0 -1 -2 -3 -4
A -1 1 0 -1 -2
T -2 0 0 1 0
A -3 -1 -1 0 2
Optimal Alignment F(4,3) 2 AGTA A?TA
j 0
1
2
3
55The Needleman-Wunsch Algorithm
- Initialization.
- F(0, 0) 0
- F(0, j) - j ? d
- F(i, 0) - i ? d
- Main Iteration. Filling in scores
- For each i 1M
- For each j 1N
- F(i-1,j) d case 1
- F(i, j) max F(i, j-1) d
case 2 - F(i-1, j-1) s(xi, yj) case 3
- UP, if case 1
- Ptr(i,j) LEFT if case 2
- DIAG if case 3
- Termination. F(M, N) is the optimal score, and
from Ptr(M, N) can trace back optimal alignment
56Complexity
- Time
- O(NM)
- Space
- O(NM)
- Linear-space algorithms do exist (with the same
time complexity)
57Equivalent graph problem
S1
G
A
T
A
(0,0)
? a gap in the 2nd sequence ? a gap in the 1st
sequence match / mismatch
1
1
A
S2
1
T
Value on vertical/horizontal line -d Value on
diagonal m or -s
1
1
A
(3,4)
- Number of steps length of the alignment
- Path length alignment score
- Optimal alignment find the longest path from (0,
0) to (3, 4) - General longest path problem cannot be found with
DP. Longest path on this graph can be found by DP
since no cycle is possible.
58Question
- If we change the scoring scheme, will the optimal
alignment be changed? - Old Match 1, mismatch gap -1
- New match 2, mismatch gap 0
- New Match 2, mismatch gap -2?
59Question
- What kind of alignment is represented by these
paths?
A
A
A
A
A
B C
B C
B C
B C
B C
A- BC
A-- -BC
--A BC-
-A- B-C
-A BC
Alternating gaps are impossible if s gt -2d
60A variant of the basic algorithm
- Scoring scheme m s d 1
- Seq1 CAGCA-CTTGGATTCTCGG
-
- Seq2 ---CAGCGTGG--------
- Seq1 CAGCACTTGGATTCTCGG
-
- Seq2 CAGC-----G-T----GG
- The first alignment may be biologically more
realistic in some cases (e.g. if we know s2 is a
subsequence of s1)
Score -7
Score -2
61A variant of the basic algorithm
- Maybe it is OK to have an unlimited of gaps in
the beginning and end
----------CTATCACCTGACCTCCAGGCCGATGCCCCTTCCGGC GCG
AGTTCATCTATCAC--GACCGC--GGTCG--------------
- Then, we dont want to penalize gaps in the ends
62The Overlap Detection variant
- Changes
- Initialization
- For all i, j,
- F(i, 0) 0
- F(0, j) 0
- Termination
- maxi F(i, N)
- FOPT max maxj F(M, j)
x1 xM
yN y1
63Different types of overlaps
x
x
y
y
64The local alignment problem
- Given two strings X x1xM,
- Y y1yN
- Find substrings x, y whose similarity (optimal
global alignment value) is maximum - e.g. X abcxdex X cxde
- Y xxxcde Y c-de
x
y
65Why local alignment
- Conserved regions may be a small part of the
whole - Global alignment might miss them if flanking
junk outweighs similar regions - Genes are shuffled between genomes
C
D
B
A
D
A
B
C
66Naïve algorithm
- for all substrings X of X and Y of Y
- Align X Y via dynamic programming
- Retain pair with max value
- end
- Output the retained pair
- Time O(n2) choices for A, O(m2) for B, O(nm) for
DP, so O(n3m3 ) total.
67Reminder
- The overlap detection algorithm
- We do not give penalty to gaps at either end
Free gap
Free gap
68The local alignment idea
- Do not penalize the unaligned regions (gaps or
mismatches) - The alignment can start anywhere and ends
anywhere - Strategy whenever we get to some low similarity
region (negative score), we restart a new
alignment - By resetting alignment score to zero
69The Smith-Waterman algorithm
- Initialization F(0, j) F(i, 0) 0
-
- 0
- F(i 1, j) d
- F(i, j 1) d
- F(i 1, j 1) ?(xi, yj)
Iteration F(i, j) max
70The Smith-Waterman algorithm
- Termination
- If we want the best local alignment
- FOPT maxi,j F(i, j)
- If we want all local alignments scoring gt t
- For all i, j find F(i, j) gt t, and trace back
71x x x c d e
0 0 0 0 0 0 0
a 0
b 0
c 0
x 0
d 0
e 0
x 0
Match 2 Mismatch -1 Gap -1
72x x x c d e
0 0 0 0 0 0 0
a 0 0 0 0 0 0 0
b 0 0 0 0 0 0 0
c 0
x 0
d 0
e 0
x 0
Match 2 Mismatch -1 Gap -1
73x x x c d e
0 0 0 0 0 0 0
a 0 0 0 0 0 0 0
b 0 0 0 0 0 0 0
c 0 0 0 0 2 1 0
x 0
d 0
e 0
x 0
Match 2 Mismatch -1 Gap -1
74x x x c d e
0 0 0 0 0 0 0
a 0 0 0 0 0 0 0
b 0 0 0 0 0 0 0
c 0 0 0 0 2 1 0
x 0 2 2 2 1 0 0
d 0
e 0
x 0
Match 2 Mismatch -1 Gap -1
75x x x c d e
0 0 0 0 0 0 0
a 0 0 0 0 0 0 0
b 0 0 0 0 0 0 0
c 0 0 0 0 2 1 0
x 0 2 2 2 1 0 0
d 0 1 1 1 1 3 2
e 0
x 0
Match 2 Mismatch -1 Gap -1
76x x x c d e
0 0 0 0 0 0 0
a 0 0 0 0 0 0 0
b 0 0 0 0 0 0 0
c 0 0 0 0 2 1 0
x 0 2 2 2 1 0 0
d 0 1 1 1 1 3 2
e 0 0 0 0 0 2 5
x 0
Match 2 Mismatch -1 Gap -1
77x x x c d e
0 0 0 0 0 0 0
a 0 0 0 0 0 0 0
b 0 0 0 0 0 0 0
c 0 0 0 0 2 1 0
x 0 2 2 2 1 1 0
d 0 1 1 1 1 3 2
e 0 0 0 0 0 2 5
x 0 2 2 2 1 1 4
Match 2 Mismatch -1 Gap -1
78Trace back
x x x c d e
0 0 0 0 0 0 0
a 0 0 0 0 0 0 0
b 0 0 0 0 0 0 0
c 0 0 0 0 2 1 0
x 0 2 2 2 1 1 0
d 0 1 1 1 1 3 2
e 0 0 0 0 0 2 5
x 0 2 2 2 1 1 4
Match 2 Mismatch -1 Gap -1
79Trace back
x x x c d e
0 0 0 0 0 0 0
a 0 0 0 0 0 0 0
b 0 0 0 0 0 0 0
c 0 0 0 0 2 1 0
x 0 2 2 2 1 1 0
d 0 1 1 1 1 3 2
e 0 0 0 0 0 2 5
x 0 2 2 2 1 1 4
Match 2 Mismatch -1 Gap -1
cxde c-de
x-de xcde
80- No negative values in local alignment DP array
- Optimal local alignment will never have a gap on
either end - Local alignment Smith-Waterman
- Global alignment Needleman-Wunsch
81Analysis
- Time
- O(MN) for finding the best alignment
- Time to report all alignments depends on the
number of sub-opt alignments - Memory
- O(MN)
- O(MN) possible
82- More efficient alignment algorithms
83- Given two sequences of length M, N
- Time O(MN)
- Ok, but still slow for long sequences
- Space O(MN)
- bad
- 1Mb seq x 1Mb seq 1TB memory
- Can we do better?
84Bounded alignment
- Good alignment should appear near the diagonal
85Bounded Dynamic Programming
- If we know that x and y are very similar
- Assumption gaps(x, y) lt k
- xi
- Then, implies i j lt k
- yj
86Bounded Dynamic Programming
- Initialization
- F(i,0), F(0,j) undefined for i, j gt k
- Iteration
- For i 1M
- For j max(1, i k)min(N, ik)
- F(i 1, j 1) ?(xi, yj)
- F(i, j) max F(i, j 1) d, if j gt i k
- F(i 1, j) d, if j lt i k
- Termination same
x1 xM
yN y1
k
87Analysis
- Time O(kM) ltlt O(MN)
- Space O(kM) with some tricks
gt
M
M
2k
2k
88(No Transcript)
89- Given two sequences of length M, N
- Time O(MN)
- ok
- Space O(MN)
- bad
- 1mb seq x 1mb seq 1TB memory
- Can we do better?
90Linear space algorithm
- If all we need is the alignment score but not the
alignment, easy!
We only need to keep two rows (You only need one
row, with a little trick)
But how do we get the alignment?
91Linear space algorithm
- When we finish, we know how we have aligned the
ends of the sequences
XM YN
Naïve idea Repeat on the smaller subproblem
F(M-1, N-1) Time complexity O((MN)(MN))
92(0, 0)
M/2
(M, N)
Key observation optimal alignment (longest path)
must use an intermediate point on the M/2-th row.
Call it (M/2, k), where k is unknown.
93(0,0)
(3,2)
(3,4)
(3,6)
(3,0)
(6,6)
- Longest path from (0, 0) to (6, 6) is max_k
(LP(0,0,3,k) LP(6,6,3,k))
94Hirschbergs idea
Y
Forward algorithm Align x1x2xM/2 with Y
X
M/2
F(M/2, k) represents the best alignment between
x1x2xM/2 and y1y2yk
95Backward Algorithm
Y
Backward algorithm Align reverse(xM/21xM) with
reverse(Y)
X
M/2
B(M/2, k) represents the best alignment between
reverse(xM/21xM) and reverse(ykyk1yN )
96Linear-space alignment
- Using 2 (4) rows of space, we can compute
- for k 1N, F(M/2, k), B(M/2, k)
M/2
97Linear-space alignment
- Now, we can find k maximizing F(M/2, k) B(M/2,
k) - Also, we can trace the path exiting column M/2
from k
Conclusion In O(NM) time, O(N) space, we found
optimal alignment path at row M/2
98Linear-space alignment
- Iterate this procedure to the two sub-problems!
M/2
k
M/2
N-k
99Analysis
- Memory O(N) for computation, O(NM) to store the
optimal alignment - Time
- MN for first iteration
- k M/2 (N-k) M/2 MN/2 for second
k
M/2
M/2
N-k
100MN
MN/2
MN/4
MN MN/2 MN/4 MN/8 MN (1 ½ ¼
1/8 1/16 ) 2MN O(MN)
MN/8
101Outline
- Part I Algorithms
- Biological problem
- Intro to dynamic programming
- Global sequence alignment
- Local sequence alignment
- More efficient algorithms
- Part II Biological issues
- Model gaps more accurately
- Alignment statistics
- Part III BLAST
102- How to model gaps more accurately
103Whats a better alignment?
Score 8 x m 3 x d
Score 8 x m 3 x d
- However, gaps usually occur in bunches.
- During evolution, chunks of DNA may be lost
entirely - Aligning genomic sequences vs. cDNAs (reverse
complimentary to mRNAs)
104Model gaps more accurately
- Current model
- Gap of length n incurs penalty n?d
- General
- Convex function
- E.g. ?(n) c sqrt (n)
?
n
?
n
105General gap dynamic programming
- Initialization same
- Iteration
- F(i-1, j-1) s(xi, yj)
- F(i, j) max maxk0i-1F(k,j) ?(i-k)
- maxk0j-1F(i,k) ?(j-k)
- Termination same
- Running Time O((MN)MN) (cubic)
- Space O(NM) (linear-space algorithm not
applicable)
106Compromise affine gaps
?(n)
- ?(n) d (n 1)?e
-
- gap gap
- open extension
e
d
Match 2 Gap open -5 Gap extension -1
GACGCCGAACG GACGC---ACG
GACGCCGAACG GACG-C-A-CG
8x2-5-2 9
8x2-3x5 1
- We want to find the optimal alignment with affine
gap penalty in - O(MN) time
- O(MN) or better O(MN) memory
107Allowing affine gap penalties
- Still three cases
- xi aligned with yj
- xi aligned to a gap
- Are we continuing a gap in x? (if no, start is
more expensive) - yj aligned to a gap
- Are we continuing a gap in y? (if no, start is
more expensive) - We can use a finite state machine to represent
the three cases as three states - The machine has two heads, reading the chars on
the two strings separately - At every step, each head reads 0 or 1 char from
each sequence - Depending on what it reads, goes to a different
state, and produces different scores
108Finite State Machine
Input
Output
? / ?
? / ?
Ix
? / ?
? / ?
F
? / ?
Iy
? / ?
State
? / ?
F have just read 1 char from each seq (xi
aligned to yj ) Ix have read 0 char from x. (yj
aligned to a gap) Iy have read 0 char from y (xi
aligned to a gap)
109Input
Output
(-, yj) / e
Ix
(xi,yj) / ?
(xi,yj) / ?
(-, yj) / d
F
(xi,-) / d
Iy
(xi,-) / e
Start state
(xi,yj) / ?
Current state Input Output Next state
F (xi,yj) ? F
F (-,yj) d Ix
F (xi,-) d Iy
Ix (-,yj) e Ix
110F-F-Iy-F-Ix
F-F-F-F
F-Iy-F-F-Ix
AAC ACT
AAC- A-CT
AAC- -ACT
AAC ACT
Given a pair of sequences, an alignment (not
necessarily optimal) corresponds to a state path
in the FSM. Optimal alignment find a state path
to read the two sequences such that the total
output score is the highest
111Dynamic programming
- We encode this information in three different
matrices - For each element (i,j) we use three variables
- F(i,j) best alignment (score) of x1..xi y1..yj
if xi aligns to yj - Ix(i,j) best alignment of x1..xi y1..yj if yj
aligns to gap - Iy(i,j) best alignment of x1..xi y1..yj if xi
aligns to gap
xi
xi
xi
yj
yj
yj
Iy(i, j)
Ix(i, j)
F(i, j)
112(-, yj)/e
Ix
(xi,yj) /?
(xi,yj) /?
(-, yj) /d
F
(xi,-) /d
Iy
(xi,-)/e
(xi,yj) /?
F(i-1, j-1) ?(xi, yj) F(i, j) max Ix(i-1,
j-1) ?(xi, yj) Iy(i-1, j-1) ?(xi, yj)
xi
yj
113(-, yj)/e
Ix
(xi,yj) /?
(xi,yj) /?
(-, yj) /d
F
(xi,-) /d
Iy
(xi,-)/e
(xi,yj) /?
F(i, j-1) d Ix(i, j) max Ix(i, j-1)
e
xi
yj
Ix(i, j)
114(-, yj)/e
Ix
(xi,yj) /?
(xi,yj) /?
(-, yj) /d
F
(xi,-) /d
Iy
(xi,-)/e
(xi,yj) /?
F(i-1, j) d Iy(i, j) max Iy(i-1, j)
e
xi
yj
Iy(i, j)
115- F(i 1, j 1)
- F(i, j) ?(xi, yj) max Ix(i 1, j 1)
- Iy(i 1, j 1)
- F(i, j 1) d
- Ix(i, j) max
- Ix(i, j 1) e
- F(i 1, j) d
- Iy(i, j) max
- Iy(i 1, j) e
Continuing alignment
Closing gaps in x
Closing gaps in y
Opening a gap in x
Gap extension in x
Opening a gap in y
Gap extension in y
116Data dependency
F
i
Iy
Ix
j
i-1
i-1
j-1
j-1
117Data dependency
F
i
Iy
Ix
j
i
i
j
j
118Data dependency
- If we stack all three matrices
- No cyclic dependency
- Therefore, we can fill in all three matrices in
order
119Algorithm
- for i 1m
- for j 1n
- Fill in F(i, j), Ix(i, j), Iy(i, j)
- end
- end
- F(M, N) max (F(M, N), Ix(M, N), Iy(M, N))
- Time O(MN)
- Space O(MN) or O(N) when combined with the
linear-space algorithm
120Exercise
- x GCAC
- y GCC
- m 2
- s -2
- d -5
- e -1
121y
y
G C C
G C C
0 -? -? -?
-?
-?
-?
-?
x
x
-? -? -? -?
-5
-6
-7
-8
m 2 s -2 d -5 e -1
G C A C
G C A C
F aligned on both
Iy Insertion on y
G C C
y
F(i-1, j-1)
Iy(i-1, j-1)
-? -5 -6 -7
-?
-?
-?
-?
Iy(i-1,j)
x
F(i-1,j)
?(xi, yj)
G C A C
e
Ix(i-1, j-1)
d
F(i, j)
F(i,j-1)
Iy(i,j)
d
Ix(i,j)
Ix(i,j-1)
e
Ix Insertion on x
122y
y
G C C
G C C
0 -? -? -?
-? 2
-?
-?
-?
x
x
-? -? -? -?
-5
-6
-7
-8
m 2 s -2 d -5 e -1
G C A C
G C A C
F
Iy
G C C
y
-? -5 -6 -7
-?
-?
-?
-?
x
F(i-1, j-1)
Iy(i-1, j-1)
G C A C
?(xi, yj) 2
Ix(i-1, j-1)
F(i, j)
Ix
123y
y
G C C
G C C
0 -? -? -?
-? 2 -7
-?
-?
-?
x
x
-? -? -? -?
-5
-6
-7
-8
m 2 s -2 d -5 e -1
G C A C
G C A C
F
Iy
G C C
y
-? -5 -6 -7
-?
-?
-?
-?
x
F(i-1, j-1)
Iy(i-1, j-1)
G C A C
?(xi, yj) -2
Ix(i-1, j-1)
F(i, j)
Ix
124y
y
G C C
G C C
0 -? -? -?
-? 2 -7 -8
-?
-?
-?
x
x
-? -? -? -?
-5
-6
-7
-8
m 2 s -2 d -5 e -1
G C A C
G C A C
F
Iy
G C C
y
-? -5 -6 -7
-?
-?
-?
-?
x
F(i-1, j-1)
Iy(i-1, j-1)
G C A C
?(xi, yj) -2
Ix(i-1, j-1)
F(i, j)
Ix
125y
y
G C C
G C C
0 -? -? -?
-? 2 -7 -8
-?
-?
-?
x
x
-? -? -?
-5
-6
-7
-8
m 2 s -2 d -5 e -1
G C A C
G C A C
F
Iy
y
G C C
x
-5 -6 -7
-? -? -3
-?
-?
-?
G C A C
F(i,j-1)
d -5
Ix(i,j)
Ix(i,j-1)
e -1
Ix
126y
y
G C C
G C C
0 -? -? -?
-? 2 -7 -8
-?
-?
-?
x
x
-? -? -?
-5
-6
-7
-8
m 2 s -2 d -5 e -1
G C A C
G C A C
F
Iy
y
G C C
x
-5 -6 -7
-? -? -3 -4
-?
-?
-?
G C A C
F(i,j-1)
d -5
Ix(i,j)
Ix(i,j-1)
e -1
Ix
127y
y
G C C
G C C
0 -? -? -?
-? 2 -7 -8
-?
-?
-?
x
x
-? -? -?
-5 -? -? -?
-6
-7
-8
m 2 s -2 d -5 e -1
G C A C
G C A C
F
Iy
y
G C C
x
-5 -6 -7
-? -? -3 -4
-?
-?
-?
Iy(i-1,j)
G C A C
F(i-1,j)
e-1
d-5
Iy(i,j)
Ix
128y
y
G C C
G C C
0 -? -? -?
-? 2 -7 -8
-? -7
-?
-?
x
x
-? -? -?
-5 -? -? -?
-6
-7
-8
m 2 s -2 d -5 e -1
G C A C
G C A C
F
Iy
y
G C C
x
-5 -6 -7
-? -? -3 -4
-?
-?
-?
F(i-1, j-1)
Iy(i-1, j-1)
G C A C
?(xi, yj) -2
Ix(i-1, j-1)
F(i, j)
Ix
129y
y
G C C
G C C
0 -? -? -?
-? 2 -7 -8
-? -7 4
-?
-?
x
x
-? -? -?
-5 -? -? -?
-6
-7
-8
m 2 s -2 d -5 e -1
G C A C
G C A C
F
Iy
y
G C C
x
-5 -6 -7
-? -? -3 -4
-?
-?
-?
F(i-1, j-1)
Iy(i-1, j-1)
G C A C
?(xi, yj) 2
Ix(i-1, j-1)
F(i, j)
Ix
130y
y
G C C
G C C
0 -? -? -?
-? 2 -7 -8
-? -7 4 -1
-?
-?
x
x
-? -? -?
-5 -? -? -?
-6
-7
-8
m 2 s -2 d -5 e -1
G C A C
G C A C
F
Iy
y
G C C
x
-5 -6 -7
-? -? -3 -4
-?
-?
-?
F(i-1, j-1)
Iy(i-1, j-1)
G C A C
?(xi, yj) 2
Ix(i-1, j-1)
F(i, j)
Ix
131y
y
G C C
G C C
0 -? -? -?
-? 2 -7 -8
-? -7 4 -1
-?
-?
x
x
-? -? -?
-5 -? -? -?
-6
-7
-8
m 2 s -2 d -5 e -1
G C A C
G C A C
F
Iy
y
G C C
x
-5 -6 -7
-? -? -3 -4
-? -? -12 -1
-?
-?
G C A C
F(i,j-1)
d -5
Ix(i,j)
Ix(i,j-1)
e -1
Ix
132y
y
G C C
G C C
0 -? -? -?
-? 2 -7 -8
-? -7 4 -1
-?
-?
x
x
-? -? -?
-5 -? -? -?
-6 -3
-7
-8
m 2 s -2 d -5 e -1
G C A C
G C A C
F
Iy
y
G C C
x
-5 -6 -7
-? -? -3 -4
-? -? -12 -1
-?
-?
Iy(i-1,j)
G C A C
F(i-1,j)
e-1
d-5
Iy(i,j)
Ix
133y
y
G C C
G C C
0 -? -? -?
-? 2 -7 -8
-? -7 4 -1
-?
-?
x
x
-? -? -?
-5 -? -? -?
-6 -3 -12 -13
-7
-8
m 2 s -2 d -5 e -1
G C A C
G C A C
F
Iy
y
G C C
F(i-1, j-1)
Iy(i-1, j-1)
Iy(i-1,j)
x
-5 -6 -7
-? -? -3 -4
-? -? -12 -1
-?
-?
F(i-1,j)
?(xi, yj)
G C A C
e
Ix(i-1, j-1)
d
F(i, j)
F(i,j-1)
Iy(i,j)
d
Ix(i,j)
Ix(i,j-1)
e
Ix
134y
y
G C C
G C C
0 -? -? -?
-? 2 -7 -8
-? -7 4 -5
-? -8 -5 2
-?
x
x
-? -? -?
-5 -? -? -?
-6 -3 -12 -13
-7
-8
m 2 s -2 d -5 e -1
G C A C
G C A C
F
Iy
y
G C C
F(i-1, j-1)
Iy(i-1, j-1)
Iy(i-1,j)
x
-5 -6 -7
-? -? -3 -4
-? -? -12 -1
-? -? -13 -10
-?
F(i-1,j)
?(xi, yj)
G C A C
e
Ix(i-1, j-1)
d
F(i, j)
F(i,j-1)
Iy(i,j)
d
Ix(i,j)
Ix(i,j-1)
e
Ix
135y
y
G C C
G C C
0 -? -? -?
-? 2 -7 -8
-? -7 4 -1
-? -8 -5 2
-?
x
x
-? -? -?
-5 -? -? -?
-6 -3 -12 -13
-7 -8 -1
-8
m 2 s -2 d -5 e -1
G C A C
G C A C
F
Iy
y
G C C
x
-5 -6 -7
-? -? -3 -4
-? -? -12 -1
-? -? -13 -10
-?
Iy(i-1,j)
G C A C
F(i-1,j)
e-1
d-5
Iy(i,j)
Ix
136y
y
G C C
G C C
0 -? -? -?
-? 2 -7 -8
-? -7 4 -1
-? -8 -5 2
-?
x
x
-? -? -?
-5 -? -? -?
-6 -3 -12 -13
-7 -8 -1 -6
-8
m 2 s -2 d -5 e -1
G C A C
G C A C
F
Iy
y
G C C
x
-5 -6 -7
-? -? -3 -4
-? -? -12 -1
-? -? -13 -10
-?
Iy(i-1,j)
G C A C
F(i-1,j)
e-1
d-5
Iy(i,j)
Ix
137y
y
G C C
G C C
0 -? -? -?
-? 2 -7 -8
-? -7 4 -1
-? -8 -5 2
-? -9 -6 1
x
x
-? -? -?
-5 -? -? -?
-6 -3 -12 -13
-7 -8 -1 -6
-8 -13 -2 -3
m 2 s -2 d -5 e -1
G C A C
G C A C
F
Iy
y
G C C
F(i-1, j-1)
Iy(i-1, j-1)
Iy(i-1,j)
x
-5 -6 -7
-? -? -3 -4
-? -? -12 -1
-? -? -13 -10
-? -? -14 -11
F(i-1,j)
?(xi, yj)
G C A C
e
Ix(i-1, j-1)
d
F(i, j)
F(i,j-1)
Iy(i,j)
d
Ix(i,j)
Ix(i,j-1)
e
Ix
138y
y
G C C
G C C
0 -? -? -?
-? 2 -7 -8
-? -7 4 -1
-? -8 -5 2
-? -9 -6 1
x
x
-? -? -?
-5 -? -? -?
-6 -3 -12 -13
-7 -8 -1 -6
-8 -13 -2 -3
m 2 s -2 d -5 e -1
G C A C
G C A C
F
Iy
y
G C C
F(i-1, j-1)
Iy(i-1, j-1)
Iy(i-1,j)
x
-5 -6 -7
-? -? -3 -4
-? -? -12 -1
-? -? -13 -10
-? -? -14 -11
F(i-1,j)
?(xi, yj)
G C A C
e
Ix(i-1, j-1)
d
F(i, j)
F(i,j-1)
Iy(i,j)
d
Ix(i,j)
Ix(i,j-1)
e
Ix
139y
y
G C C
G C C
0 -? -? -?
-? 2 -7 -8
-? -7 4 -1
-? -8 -5 2
-? -9 -6 1
x
x
-? -? -?
-5 -? -? -?
-6 -3 -12 -13
-7 -8 -1 -6
-8 -13 -2 -3
m 2 s -2 d -5 e -1
G C A C
G C A C
GCAC GC-C
x
y
F
Iy
y
G C C
y
G C C
x
-5 -6 -7
-? -? -3 -4
-? -? -12 -1
-? -? -13 -10
-? -? -14 -11
x
G C A C
G C A C
Ix
140Statistics of alignment
- Where does ?(xi, yj) come from?
- Are two aligned sequences actually related?
141Probabilistic model of alignments
- Well first focus on protein alignments without
gaps - Given an alignment, we can consider two possible
models - R the sequences are related by evolution
- U the sequences are unrelated
- How can we distinguish these two models?
- How is this view related to amino-acid
substitution matrix?
142Model for unrelated sequences
- Assume each position of the alignment is
independently sampled from some distribution of
amino acids - ps probability of amino acid s in the sequences
- Probability of seeing an amino acid s aligned to
an amino acid t by chance is - Pr(s, t U) ps pt
- Probability of seeing an ungapped alignment
between x x1xn and y y1yn randomly is
i
143Model for related sequences
- Assume each pair of aligned amino acids evolved
from a common ancestor - Let qst be the probability that amino acid s in
one sequence is related to t in another sequence - The probability of an alignment of x and y is
give by
144Probabilistic model of Alignments
- How can we decide which model (U or R) is more
likely? - One principled way is to consider the relative
likelihood of the two models (the odds ratio) - A higher ratio means that R is more likely than U
145Log odds ratio
- Taking logarithm, we get
- Recall that the score of an alignment is given by
146- Therefore, if we define
- We are actually defining the alignment score as
the log odds ratio between the two models R and U
147How to get the probabilities?
- ps can be counted from the available protein
sequences - But how do we get qst? (the probability that s
and t have a common ancestor) - Counted from trusted alignments of related
sequences
148Protein Substitution Matrices
- Two popular sets of matrices for protein
sequences - PAM matrices Dayhoff et al, 1978
- Better for aligning closely related sequences
- BLOSUM matrices Henikoff Henikoff, 1992
- For both closely or remotely related sequences
149BLOSUM-N matrices
- Constructed from a database called BLOCKS
- Contain many closely related sequences
- Conserved amino acids may be over-counted
- N 62 the probabilities qst were computed using
trusted alignments with no more than 62 identity - identity of matched columns
- Using this matrix, the Smith-Waterman algorithm
is most effective in detecting real alignments
with a similar identity level (i.e. 62)
150? Scaling factor to convert score to
integer. Important when you are told that
a scoring matrix is in half-bits gt ? ½ ln2
Positive for chemically similar substitution
Common amino acids get low weights
Rare amino acids get high weights
151BLOSUM-N matrices
- If you want to detect homologous genes with high
identity, you may want a BLOSUM matrix with
higher N. say BLOSUM75 - On the other hand, if you want to detect remote
homology, you may want to use lower N, say
BLOSUM50 - BLOSUM-62 good for most purposes
152For DNAs
- No database of trusted alignments to start with
- Specify the percentage identity you would like to
detect - You can then get the substitution matrix by some
calculation
153For example
- Suppose pA pC pT pG 0.25
- We want 88 identity
- qAA qCC qTT qGG 0.22, the rest 0.12/12
0.01 - ?(A, A) ?(C, C) ?(G, G) ?(T, T)
- log (0.22 / (0.250.25)) 1.26
- ?(s, t) log (0.01 / (0.250.25)) -1.83 for s
? t.
154Substitution matrix
A C G T
A 1.26 -1.83 -1.83 -1.83
C -1.83 1.26 -1.83 -1.83
G -1.83 -1.83 1.26 -1.83
T -1.83 -1.83 -1.83 1.26
155A C G T
A 5 -7 -7 -7
C -7 5 -7 -7
G -7 -7 5 -7
T -7 -7 -7 5
- Scale wont change the alignment
- Multiply by 4 and then round off to get integers
156Arbitrary substitution matrix
- Say you have a substitution matrix provided by
someone - Its important to know what you are actually
looking for when you use the matrix
157NCBI-BLAST
WU-BLAST
A C G T
A 1 -2 -2 -2
C -2 1 -2 -2
G -2 -2 1 -2
T -2 -2 -2 1
A C G T
A 5 -4 -4 -4
C -4 5 -4 -4
G -4 -4 5 -4
T -4 -4 -4 5
- Whats the difference?
- Which one should I use for my sequences?
158- We had
- Scale it, so that
- Reorganize
159- Since all probabilities must sum to 1,
- We have
- Suppose again ps 0.25 for any s
- We know ?(s, t) from the substitution matrix
- We can solve the equation for ?
- Plug ? into to
get qst
160NCBI-BLAST
WU-BLAST
A C G T
A 1 -2 -2 -2
C -2 1 -2 -2
G -2 -2 1 -2
T -2 -2 -2 1
A C G T
A 5 -4 -4 -4
C -4 5 -4 -4
G -4 -4 5 -4
T -4 -4 -4 5
? 1.33 qst 0.24 for s t, and 0.004 for s ?
t Translate 95 identity
? 0.19 qst 0.16 for s t, and 0.03 for s ?
t Translate 65 identity
161Details for solving ?
- Known ?(s,t) 1 for st, and ?(s,t) -2 for
s?? t