1.4%20Absolute%20Values - PowerPoint PPT Presentation

About This Presentation
Title:

1.4%20Absolute%20Values

Description:

1.4 Absolute Values Solving Absolute Value Equations By putting into one of 3 categories – PowerPoint PPT presentation

Number of Views:127
Avg rating:3.0/5.0
Slides: 87
Provided by: tja90
Category:

less

Transcript and Presenter's Notes

Title: 1.4%20Absolute%20Values


1
1.4 Absolute Values
  • Solving Absolute Value Equations
  • By putting into one of 3 categories

2
What is the definition of Absolute Value?
  • __________________________________
  • __________________________________
  • Mathematically,
  • ___________________
  • For example, in , where could x be?

0
3
-3
3
  • To solve these situations, _______________________
    __________________________________________________
    _____________________________
  • Consider
  • ________________________

0
4
That was Category 1
  • Category 1 ____________________________
  • _______________________________________
  • _______________________________________

Example Case 1 Case 2
5
Absolute Value Inequalities
  • Think logically about another situation.
  • What does mean?
  • For instance, in the equation ,
  • _________________________________

0
6
  • How does that translate into a sentence?
  • __________________________________
  • Now solve for x.
  • This is Category 2 when x is less than a number

7
Absolute Value Inequalities
  • What does mean?
  • In the equation ,
  • __________________________________

0
8
Less than And statement
Greater than Or statement
Note ? is the same as ? ?is the same as ? just
have the sign in the rewritten equation match the
original.
9
Isolate Absolute Value
  • _______________________________________
  • ______________________________________
  • ______________________________________

10
When x is on both sides
  • ______________________________________
  • ________________________________________
  • ______________________________________

Case 1 Case 2
11
Example inequality with x on other side
Case 1 Case 2
12
Examples
Case 1 Case 2
13
Case 1 Case 2
14
Case 1 Case 2
15
_________________________________
Whats wrong with this? __________________________
__________________________________________________
________
16
(No Transcript)
17
1-4 Compound Absolute ValuesEqualities and
Inequalities
  • More than one absolute value in the equation

18
Some Vocab
  • Domain- _________________________
  • Range- __________________________
  • Restriction- _______________________
  • __________________________________________________
    ________________

19
Find a number that works.
We will find a more methodical approach to find
all the solutions.
20
In your approach, think about the values of this
particular mathematical statement in the 3
different areas on a number line.
  • -_________________________________________
  • ________________________________________
  • - ________________________________________

21
It now forms 3 different areas or cases on the
number line.
  • ______________________________
  • ______________________________
  • ___________________________________

22
Case 1 Domain
________________________
__________________________________________________
__
__________________________________________________
_________________________________________________
23
Case 2 Domain
___________________________________
24
Case 3 Domain
_____________________________
25
  • Final Answers
  • ______________________________
  • ______________________________
  • _____________________________

2
5
-2
26
If you get an answer in any of the cases where
the variable disappears and the answer is TRUE
________________________________ ________________
__________________________________________________
______________________________
27
(No Transcript)
28
1-5 Exponential Rules
You know these already
29
Review of the Basics
30
Practice problems
Simplify each expression
31
(No Transcript)
32
Do NOT use calculators on the homework, please!!
?
33
RuleIf bases the same set exponents equal to
each other
34
1-6 Radicals (Day 1) and Rational Exponents (Day
2)
35
What is a Radical?
  • In simplest term, it is a square root ( )
  • ________________

36
  • The Principle nth root of a
  • 1.
  • If a lt 0 and n is odd then is a negative
    number ___________________
  • If a lt 0 and n is even, _____________ __________

37
Vocab
38
Lets Recall
39
Rules of Radicals

40
Practice problems
Simplify each expression
41
Class Work problems
Simplify each expression
42
1-6 Radicals (Day 1) and Rational Exponents (Day
2)
43
What is a Rational Exponent?
  • ____________________________________
  • ____________________________________
  • ____________________________________
  • ____________________________________

44
Dont be overwhelmed by fractions!
  • These problems are not hard, as long as you
    remember what each letter means. Notice I used
    p as the numerator and r as the denominator.
  • p _____________________________
  • r _____________________________
  • ________________________________________
  • ________________________________________
  • ________________________________________

45
Practice problems
Simplify each expression
46
The last part of this topic
  • What is wrong with this number?
  • ___________________________________
  • ___________________________________
  • ___________________________________

47
Rationalizing
  • If you see a single radical in the denominator
    ______________________________________
  • ________________________________________
  • ________________________________________
  • ________________________________________

48
Rationalizing
  • If you see 1 or more radicals in a binomial, what
    can we do?

49
What is a Conjugate?
  • The conjugate of a b ______. Why?
  • The conjugate _______________________
  • ___________________________________
  • ___________________________________
  • ___________________________________

50
Rationalizing
  • Multiply top and bottom by the conjugate! Its
    MAGIC!!

51
1.7 Fundamental Operations
52
Terms
  • Monomial ______________________________
  • Binomial _______________________________
  • Trinomial ______________________________

53
  • Standard form
  • _______________________________________
  • Collecting Like terms

54
  • F ____________
  • O ____________
  • I ____________
  • L ____________

55
  • Examples

56
1-8 Factoring Patterns
57
What is the first step??
  • _____

Why? __________________________________ __________
________________________ ________________________
__________ ___________________________________
58
Perfect Square Trinomial
Factors as
59
Difference of squares
60
Sum/Difference of cubes
61
3 terms but not a pattern?
  • This is where you use combinations of the first
    term with combinations of the third term that
    collect to be the middle term.

62
4 or more terms?
  • ________________________________________
  • ________________________________________
  • ________________________________________
  • ________________________________________
  • ________________________________________
  • ________________________________________
  • ________________________________________

63
Examples
64
Solve using difference of Squares
Solve using sum of cubes
65
Examples of Grouping
66
Examples of Grouping
67
1.9 Fundamental Operations
  • What are the Fundamental Operations?

68
Addition, Subtraction, Multiplication and Division
  • We will be applying these fundamental operations
    to rational expressions.
  • This will all be review. We are working on the
    little things here.

69
Simplify the following
  • Hint __________________________________
  • _______________________________________
  • _______________________________________
  1. What is the domain of problem 1?

70
(No Transcript)
71
(No Transcript)
72
(No Transcript)
73
_______________________________ _________________
______________ Lets Watch.
74
Polynomial Long Division
75
Polynomial Long Division
76
1-10 Introduction to Complex Numbers
  • What is a complex number?

77
To see a complex number we have to first see
where it shows up
  • Solve both of these

78
Um, no solution????
  • does not have a real
    answer.
  • It has an imaginary answer.
  • To define a complex number ____________
  • ___________________________________
  • This new variable is i

79
  • Definition
  • Note __________________
  • So, following this definition
  • ______________________________
  • ______________________________
  • ______________________________
  • ______________________________

80
And it cycles.
Do you see a pattern yet?
81
What is that pattern?
  • We are looking at the remainder when the power is
    divided by 4.
  • Why?
  • ___________________________________
  • ___________________________________
  • ___________________________________
  • Try it with

82
Hints to deal with i
  • 1. __________________________________
  • 2. __________________________________
  • ____________________________________
  • _________________________________
  • ____________________________________

83
Examples
84
OK, so what is a complex number?
  • ______________________________
  • ______________________________
  • A complex number comes in the form
  • a bi

85
Lets try these 4 problems.
86
(No Transcript)
Write a Comment
User Comments (0)
About PowerShow.com