Title: 1.4%20Absolute%20Values
11.4 Absolute Values
- Solving Absolute Value Equations
- By putting into one of 3 categories
2What is the definition of Absolute Value?
- __________________________________
- __________________________________
- Mathematically,
- ___________________
-
- For example, in , where could x be?
0
3
-3
3- To solve these situations, _______________________
__________________________________________________
_____________________________ - Consider
-
- ________________________
0
4That was Category 1
- Category 1 ____________________________
- _______________________________________
- _______________________________________
Example Case 1 Case 2
5Absolute Value Inequalities
- Think logically about another situation.
- What does mean?
- For instance, in the equation ,
- _________________________________
0
6- How does that translate into a sentence?
- __________________________________
- Now solve for x.
- This is Category 2 when x is less than a number
7Absolute Value Inequalities
- What does mean?
- In the equation ,
- __________________________________
0
8Less than And statement
Greater than Or statement
Note ? is the same as ? ?is the same as ? just
have the sign in the rewritten equation match the
original.
9Isolate Absolute Value
- _______________________________________
- ______________________________________
- ______________________________________
10When x is on both sides
- ______________________________________
- ________________________________________
- ______________________________________
Case 1 Case 2
11Example inequality with x on other side
Case 1 Case 2
12Examples
Case 1 Case 2
13Case 1 Case 2
14Case 1 Case 2
15_________________________________
Whats wrong with this? __________________________
__________________________________________________
________
16(No Transcript)
171-4 Compound Absolute ValuesEqualities and
Inequalities
- More than one absolute value in the equation
18Some Vocab
- Domain- _________________________
- Range- __________________________
- Restriction- _______________________
- __________________________________________________
________________
19Find a number that works.
We will find a more methodical approach to find
all the solutions.
20In your approach, think about the values of this
particular mathematical statement in the 3
different areas on a number line.
- -_________________________________________
- ________________________________________
- - ________________________________________
21It now forms 3 different areas or cases on the
number line.
- ______________________________
- ______________________________
- ___________________________________
22Case 1 Domain
________________________
__________________________________________________
__
__________________________________________________
_________________________________________________
23Case 2 Domain
___________________________________
24Case 3 Domain
_____________________________
25- Final Answers
- ______________________________
- ______________________________
- _____________________________
2
5
-2
26If you get an answer in any of the cases where
the variable disappears and the answer is TRUE
________________________________ ________________
__________________________________________________
______________________________
27(No Transcript)
281-5 Exponential Rules
You know these already
29Review of the Basics
30Practice problems
Simplify each expression
31(No Transcript)
32Do NOT use calculators on the homework, please!!
?
33RuleIf bases the same set exponents equal to
each other
341-6 Radicals (Day 1) and Rational Exponents (Day
2)
35What is a Radical?
- In simplest term, it is a square root ( )
-
- ________________
36- The Principle nth root of a
- 1.
- If a lt 0 and n is odd then is a negative
number ___________________ - If a lt 0 and n is even, _____________ __________
37Vocab
38Lets Recall
39Rules of Radicals
40Practice problems
Simplify each expression
41Class Work problems
Simplify each expression
421-6 Radicals (Day 1) and Rational Exponents (Day
2)
43What is a Rational Exponent?
- ____________________________________
- ____________________________________
- ____________________________________
- ____________________________________
44Dont be overwhelmed by fractions!
- These problems are not hard, as long as you
remember what each letter means. Notice I used
p as the numerator and r as the denominator.
- p _____________________________
- r _____________________________
- ________________________________________
- ________________________________________
- ________________________________________
45Practice problems
Simplify each expression
46The last part of this topic
- What is wrong with this number?
- ___________________________________
- ___________________________________
- ___________________________________
47Rationalizing
- If you see a single radical in the denominator
______________________________________ - ________________________________________
- ________________________________________
- ________________________________________
48Rationalizing
- If you see 1 or more radicals in a binomial, what
can we do?
49What is a Conjugate?
- The conjugate of a b ______. Why?
- The conjugate _______________________
- ___________________________________
- ___________________________________
- ___________________________________
50Rationalizing
- Multiply top and bottom by the conjugate! Its
MAGIC!!
511.7 Fundamental Operations
52Terms
- Monomial ______________________________
- Binomial _______________________________
- Trinomial ______________________________
53- Standard form
- _______________________________________
- Collecting Like terms
54- F ____________
- O ____________
- I ____________
- L ____________
55 561-8 Factoring Patterns
57What is the first step??
Why? __________________________________ __________
________________________ ________________________
__________ ___________________________________
58Perfect Square Trinomial
Factors as
59Difference of squares
60Sum/Difference of cubes
613 terms but not a pattern?
- This is where you use combinations of the first
term with combinations of the third term that
collect to be the middle term.
624 or more terms?
- ________________________________________
- ________________________________________
- ________________________________________
- ________________________________________
- ________________________________________
- ________________________________________
- ________________________________________
63Examples
64Solve using difference of Squares
Solve using sum of cubes
65Examples of Grouping
66Examples of Grouping
671.9 Fundamental Operations
- What are the Fundamental Operations?
68Addition, Subtraction, Multiplication and Division
- We will be applying these fundamental operations
to rational expressions. - This will all be review. We are working on the
little things here.
69Simplify the following
- Hint __________________________________
- _______________________________________
- _______________________________________
- What is the domain of problem 1?
70(No Transcript)
71(No Transcript)
72(No Transcript)
73_______________________________ _________________
______________ Lets Watch.
74Polynomial Long Division
75Polynomial Long Division
761-10 Introduction to Complex Numbers
- What is a complex number?
77To see a complex number we have to first see
where it shows up
78Um, no solution????
- does not have a real
answer. - It has an imaginary answer.
- To define a complex number ____________
- ___________________________________
- This new variable is i
79- Definition
- Note __________________
- So, following this definition
- ______________________________
- ______________________________
- ______________________________
- ______________________________
80And it cycles.
Do you see a pattern yet?
81What is that pattern?
- We are looking at the remainder when the power is
divided by 4. - Why?
- ___________________________________
- ___________________________________
- ___________________________________
- Try it with
82Hints to deal with i
- 1. __________________________________
- 2. __________________________________
- ____________________________________
- _________________________________
- ____________________________________
83Examples
84OK, so what is a complex number?
- ______________________________
- ______________________________
- A complex number comes in the form
- a bi
85Lets try these 4 problems.
86(No Transcript)