?????? Stochastic Frontier Models - PowerPoint PPT Presentation

1 / 35
About This Presentation
Title:

?????? Stochastic Frontier Models

Description:

Title: 1 Last modified by: Lenovo User Document presentation format: (4:3) Other titles: Euclid Arial Calibri _GB2312 ... – PowerPoint PPT presentation

Number of Views:264
Avg rating:3.0/5.0
Slides: 36
Provided by: educ5362
Category:

less

Transcript and Presenter's Notes

Title: ?????? Stochastic Frontier Models


1
??????Stochastic Frontier Models
  • ???
  • ???? ????
  • arlionn_at_163.com
  • 2013?12?9?
  • New Course http//baoming.pinggu.org/Default.aspx
    ?id93

2
??
  • SFA ??
  • ??SFA??
  • ??SFA??
  • ??SFA??

3
I. SFA ??
4
SFA ???????
5
SFA ??

y1
Source Porcelli(2009)
6
??????????
Q ??????????
Note ?? v, u ???,???? x ????
7
????????????????
8
??????????
9
????????????
10
?????
  • Jondrow, Lovell, Materov and Schmidt
    (1982),JLMS82
  • Battese and Coelli (1988),BC88

11
II. ????????Panel SFA
  • Review linear FE v.s. RE)
  • FE (Fixed Effect Model)
  • RE (Random Effect Model)
  • Pooled OLS

12
II. ????????Panel SFA
  • ???????
  • ai ??????, N -1 ???????
  • ?i ????????????
  • vit ???????????
  • ?i ??????????? (persistent component)
  • uit ?????????? (transient component)

13
Panel SFA Pooled SFA model
14
Panel SFA?????? (RE-SFA)????????
  • Pitt and Lee (1981), PL81

15
Panel SFA?????? (FE-SFA) ????????
  • Schmidt and Sickles (1984), SS84
  • TE???

16
Panel SFA ??????
  • Cornwell, Schmidt and Sickles (1990), CSS90
  • Lee and Schmidt (1993), LS93

17
Panel SFA ??????
  • Battese and Coelli(1992), BC92, ??????

18
Panel SFA True FE SFA
  • Greene?? (Greene Problem)
  • True-Model
  • Estimate-Model
  • Implications
  • TE ?????????
  • ????????(????, CEO???)???????????????

19
Panel SFA True FE SFA
  • Greene(2005), TFE
  • ???? ??? (brute force approach)
  • ??? N ???????? k ? ? ????
  • ???????????????

20
Panel SFA True RE SFA
  • Greene(2005), TRE
  • ???? MLE
  • ???????? RE ??,???????????

21
Panel SFA Generalized TRE SFA
  • Tsionas and Kumbhakar (2013), G-TRE
  • ?? TRE

22
Panel SFA Scaling-TFE SFA
  • Wang and Ho (2010), Scaling-TFE
  • gitscaling function, ???????(zit)???
  • git???????????
  • git???????????FD??????????? ?i

23
Panel SFA dynamic SFA
  • Ahn and Sickles (2000), Dynamic-SFA
  • ?i ????? i ?????????????(speed)
  • ?i ??,?????????????????

24
??? SFA Heterogeneous SFA
  • ????

25
??? SFA Heterogeneous SFA
  • ??????
  • ??????(????)
  • ?????(?????)

26
???????? two-tier SFA
  • ????

27
???????? two-tier SFA
  • ????
  • ?????

28
  • Thanks

New Course http//baoming.pinggu.org/Default.aspx
?id93
29
References 1
  • Aigner, D., C. Lovell, P. Schmidt, 1977,
    Formulation and estimation of stochastic frontier
    production function models, Journal of
    Econometrics, 6 (1) 21-37.
  • Arellano, M., S. Bond, 1991, Some tests of
    specification for panel data Monte carlo
    evidence and an application to employment
    equations, Review of Economic Studies, 58 (2)
    277-297.
  • Arellano, M., O. Bover, 1995, Another look at the
    instrumental variable estimation of
    error-components models, Journal of Econometrics,
    68 (1) 29-51.
  • Battese, G., T. Coelli, 1992, Frontier production
    functions, technical efficiency and panel data
    With application to paddy farmers in india,
    Journal of Productivity Analysis, 3 (1) 153-169.
  • Battese, G. E., T. J. Coelli, 1988, Prediction of
    firm-level technical efficiencies with a
    generalized frontier production function and
    panel data, Journal of Econometrics, 38 (3)
    387-399.
  • Battese, G. E., T. J. Coelli, 1995, A model for
    technical inefficiency effects in a stochastic
    frontier production function for panel data,
    Empirical Economics, 20 (2) 325-332.
  • Belotti, F., S. Daidone, G. Ilardi, V. Atella,
    2013, Stochastic frontier analysis using stata,
    Stata Journal forthcoming.
  • Chang, S. K., Y. Y. Chen, H. J. Wang, 2012, A
    bayesian estimator for stochastic frontier models
    with errors in variables, Journal of Productivity
    Analysis, 38 (1) 1-9.
  • Chen, N.-K., Y.-Y. Chen, H.-J. Wang, 2011, Asset
    prices and capital investmenta panel stochastic
    frontier approach, Working Paper.

30
References 2
  • Coelli, T., D. Prasada Rao, G. E. Battese. An
    introduction to efficiency and productivity
    analysisM. Boston Kluwer Academic Publishers
    1998.
  • Colombi, R., G. Martini, G. Vittadini, 2011, A
    stochastic frontier model with short-run and
    long-run inefficiency, Working Paper, Department
    of Economics and Technology Management,
    Universita di Bergamo, Italy.
  • Emvalomatis, G., 2012, Adjustment and unobserved
    heterogeneity in dynamic stochastic frontier
    models, Journal of Productivity Analysis, 37 (1)
    7-16.
  • Feng, G., A. Serletis, 2009, Efficiency and
    productivity of the us banking industry,
    19982005 Evidence from the fourier cost
    function satisfying global regularity conditions,
    Journal of Applied Econometrics, 24 (1) 105-138.
  • Fried, H. O., C. Lovell, S. S. Schmidt. 2008,
    Efficiency and productivityC, in H. O. Fried,
    C. Lovell,S. S. Schmidt eds, The measurement of
    productive efficiency and productivity change
    (Oxford University Press, New York) 3-92.
  • Greene, W., 2005a, Fixed and random effects in
    stochastic frontier models, Journal of
    Productivity Analysis, 23 (1) 7-32.
  • Greene, W., 2005b, Reconsidering heterogeneity in
    panel data estimators of the stochastic frontier
    model, Journal of Econometrics, 126 (2) 269-303.
  • Greene, W., 2008, The econometric approach to
    efficiency analysis, The Measurement of
    Productive Efficiency and Productivity Change, 1
    (5) 92-251.

31
References 3
  • Habib, M., A. Ljungqvist, 2005, Firm value and
    managerial incentives A stochastic frontier
    approach, Journal of Business, 78 (6) 2053-2094.
  • Hadri, K., 1999, Estimation of a doubly
    heteroscedastic stochastic frontier cost
    function, Journal of Business Economic
    Statistics, 17 (3) 359-363.
  • Huang, C. J., J.-T. Liu, 1994, Estimation of a
    non-neutral stochastic frontier production
    function, Journal of Productivity Analysis, 5
    (2) 171-180.
  • Jondrow, J., K. Lovell, I. Materov, P. Schmidt,
    1982, On the estimation of technical inefficiency
    in the stochastic frontier production function
    model, Journal of Econometrics, 19 (2-3)
    233-238.
  • Koutsomanoli-Filippaki, A., E. C. Mamatzakis,
    2010, Estimating the speed of adjustment of
    european banking efficiency under a quadratic
    loss function, Economic Modelling, 27 (1) 1-11.
  • Kumbhakar, S., F. Christopher, 2009, The effects
    of bargaining on market outcomes Evidence from
    buyer and seller specific estimates, Journal of
    Productivity Analysis, 31 (1) 1-14.
  • Kumbhakar, S., G. Lien, J. B. Hardaker, 2012a,
    Technical efficiency in competing panel data
    models A study of norwegian grain farming,
    Journal of Productivity Analysis 1-17.

32
References 4
  • Kumbhakar, S., C. Lovell. Stochastic frontier
    analysisM. Cambridge Cambridge University
    Press, 2000.
  • Kumbhakar, S., R. Ortega-Argilés, L. Potters, M.
    Vivarelli,P. Voigt, 2012b, Corporate rd and firm
    efficiency Evidence from europes top rd
    investors, Journal of Productivity Analysis, 37
    (2) 125-140.
  • Kumbhakar, S. C., 1990, Production frontiers,
    panel data, and time-varying technical
    inefficiency, Journal of Econometrics, 46 (1)
    201-211.
  • Kumbhakar, S. C., S. Ghosh, J. T. McGuckin, 1991,
    A generalized production frontier approach for
    estimating determinants of inefficiency in us
    dairy farms, Journal of Business Economic
    Statistics, 9 (3) 279-286.
  • Kumbhakar, S. C., C. F. Parmeter, E. G. Tsionas,
    2013, A zero inefficiency stochastic frontier
    model, Journal of Econometrics, 172 (1) 66-76.
  • Kumbhakar, S. C., E. G. Tsionas, 2011, Some
    recent developments in efficiency measurement in
    stochastic frontier models, Journal of
    Probability and Statistics, 2011 forthcoming.
  • Lai, H.-p., C. J. Huang, 2011, Maximum likelihood
    estimation of seemingly unrelated stochastic
    frontier regressions, Journal of Productivity
    Analysis 1-14.

33
References 5
  • Lee, Y. H., P. Schmidt. 1993, A production
    frontier model with flexible temporal variation
    in technical efficiencyC, in H. Fried, C.
    Lovell,S. Schmidt eds, The measurement of
    productive efficiency Techniques and
    applications (Oxford University Press, Oxford,
    UK) 237-255.
  • Lian, Y., C.-F. Chung, 2008, Are chinese listed
    firms over-investing?, SSRN working paper,
    Available at SSRN http//ssrn.com/abstract129646
    2.
  • Meeusen, W., J. Van den Broeck, 1977, Efficiency
    estimation from cobb-douglas production functions
    with composed error, International Economic
    Review, 18 (2) 435-444.
  • Peyrache, A., A. N. Rambaldi, 2012, A state-space
    stochastic frontier panel data model, working
    Paper.
  • Pitt, M. M., L.-F. Lee, 1981, The measurement and
    sources of technical inefficiency in the
    indonesian weaving industry, Journal of
    Development Economics, 9 (1) 43-64.
  • Tsionas, E. G., S. C. Kumbhakar, 2013,
    Firm-heterogeneity, persistent and transient
    technical inefficiencyA generalized true random
    effects model, Journal of Applied Econometrics
    forthcoming.

34
References 6
  • Wang, E. C., 2007, Rd efficiency and economic
    performance A cross-country analysis using the
    stochastic frontier approach, Journal of Policy
    Modeling, 29 (2) 345-360.
  • Wang, H., 2003, A stochastic frontier analysis of
    financing constraints on investment The case of
    financial liberalization in taiwan, Journal of
    Business and Economic Statistics, 21 (3)
    406-419.
  • Wang, H. J., C. W. Ho, 2010, Estimating
    fixed-effect panel stochastic frontier models by
    model transformation, Journal of Econometrics,
    157 (2) 286-296.
  • Yélou, C., B. Larue, K. C. Tran, 2010, Threshold
    effects in panel data stochastic frontier models
    of dairy production in canada, Economic
    Modelling, 27 (3) 641-647.
  • ???, ???, ??, 2009, ????????????????????, ????,
    (10) 51-61.
  • ???, ???, 2013, ??????????????, ????, (9)
    125-136.
  • ???, ???, ???, 2013, ???????????????, ????, (5)
    47-53.
  • ???, ???, ???, 2011, ???????????????????, ????,
    (4) 94-106.

35
  • Whats More
  • http//baoming.pinggu.org/Default.aspx?id93
Write a Comment
User Comments (0)
About PowerShow.com