Hot plate Conduction Numerical Solver and Visualizer - PowerPoint PPT Presentation

About This Presentation
Title:

Hot plate Conduction Numerical Solver and Visualizer

Description:

HOT PLATE CONDUCTION NUMERICAL SOLVER AND VISUALIZER Kurt Hinkle and Ivan Yorgason INTRODUCTION There are analytical methods that, in certain cases, can produce exact ... – PowerPoint PPT presentation

Number of Views:144
Avg rating:3.0/5.0
Slides: 18
Provided by: Ivan3158
Learn more at: http://www.et.byu.edu
Category:

less

Transcript and Presenter's Notes

Title: Hot plate Conduction Numerical Solver and Visualizer


1
Hot plate Conduction Numerical Solver and
Visualizer
  • Kurt Hinkle and Ivan Yorgason

2
Introduction
  • There are analytical methods that, in certain
    cases, can produce exact mathematical solutions
    to 2D steady state conduction problems.
  • There are even solutions that are available for
    simple geometries with specific boundary
    conditions that can be used simply by plugging in
    numbers.
  • Sometimes, however, there are geometries and/or
    boundary conditions that are not covered by the
    aforementioned solutions.
  • When this occurs, numerical techniques, such as
    finite-difference, finite-element, and
    boundary-element methods are used to provide
    approximate solutions.
  • This project uses the finite-difference form of
    the heat equation to solve for the temperatures
    across a square plate.

3
Limitations and assumptions
  • 2D steady state conduction
  • Constant wall temperatures
  • No convection
  • Square plate
  • Square elements
  • Temperatures ranging 0ºC - 1000ºC
  • Mesh size ranging 3 - 80

4
Method
5
Method
Mesh
6
Method
500ºC
500ºC
500ºC
Initial Values
0ºC
0ºC
0ºC
1000ºC
0ºC
1000ºC
0ºC
0ºC
0ºC
0ºC
0ºC
0ºC
0ºC
1000ºC
0ºC
100ºC
100ºC
100ºC
7
Method
500ºC
500ºC
500ºC
0ºC
0ºC
375ºC
1000ºC
0ºC
?
Calculate First Element Temperature
(1000ºC 500ºC 0ºC 0ºC)/4 375ºC
1000ºC
0ºC
0ºC
0ºC
0ºC
0ºC
0ºC
0ºC
1000ºC
0ºC
100ºC
100ºC
100ºC
8
Method
500ºC
500ºC
500ºC
179.7ºC
218.8ºC
375ºC
1000ºC
0ºC
1st Iteration Complete
1000ºC
0ºC
80.1ºC
140.6ºC
343.8ºC
82.6ºC
150.4ºC
360.9ºC
1000ºC
0ºC
100ºC
100ºC
100ºC
9
Method
500ºC
500ºC
500ºC
228.5ºC
333.9ºC
515.6ºC
1000ºC
0ºC
2nd Iteration Complete
1000ºC
0ºC
144.6ºC
267.2ºC
504.3ºC
116.7ºC
222.1ºC
438.7ºC
1000ºC
0ºC
100ºC
100ºC
100ºC
10
Method
500ºC
500ºC
500ºC
259.9ºC
395.1ºC
584.6ºC
1000ºC
0ºC
3rd Iteration Complete
1000ºC
0ºC
177.5ºC
333.6ºC
572.6ºC
133.4ºC
255.9ºC
473.7ºC
1000ºC
0ºC
100ºC
100ºC
100ºC
11
Method
  • Differences with finite-difference method
  • Instead of setting up a matrix and inverting it
    to solve for all temperatures at once, the
    temperatures are solved for through an iterative
    process.
  • This iterative process (N2 algorithm) is limited
    by a time which is calculated based on the mesh
    size. Larger mesh sizes are allowed more time to
    iteratively solve for the element temperatures.

12
Functionality
13
Functionality
  • Live Demo
  • 14.exe

14
Post processing
15
Future Work
  • Allow for other shapes and holes in the geometry
  • Allow for different mesh element types
    (tetrahedral, etc.)
  • Stop the iterative solver based on a tolerance
    instead of a time limit
  • Export .jpg of visualized results with
    results.dat file
  • Have the color scheme be relative to the maximum
    and minimum temperatures instead of the scale
    being absolute (1000ºC red and 0ºC blue).

16
Conclusion
  • Provides quick and accurate results for the given
    assumptions
  • Graphically displays the results in an
    understandable and pleasing manner
  • With the option to print the results to a file,
    further analysis is easily accomplished
  • The finite-difference form of the heat equation
    is easy to implement programmatically

17
Questions?
Write a Comment
User Comments (0)
About PowerShow.com