Title: THERMAL INERTIA FOR SMALL SCALE RESIDENTIAL BUILDING
1THERMAL INERTIA FOR SMALL SCALE RESIDENTIAL
BUILDING
STIJN VERBEKE
stijn.verbeke_at_ua.ac.be
Phd Student, University of Antwerp, Belgium
BAUSIM 2010 CONFERENCE Vienna University of
Technology
2// PROBLEM DESCRIPTION //
Reduce summer overheating
Fast reaction
Store heat gains
Benefits night setback
1
3// PROBLEM DESCRIPTION //
?
What is the effect of building thermal inertia in
houses in Belgian climatic conditions?
2
4// METHODS // Whole Building Simulation //
Energy Plus
- Conduction finite difference alghoritm
- Annual simulation
- Time step 3 minutes
- Weather data IWEC Brussels
3
5// METHODS // Model Geometry //
4
6// METHODS // Model Geometry //
Design Variants
- Building thermal Mass
- Orientation
- Glazed surface
- Level of thermal insulation K70/K45/K35/K25
5
7// METHODS // Occupant behaviour //
- Unpredictable behaviour
- Various activities
- User interference
6
8// METHODS // Occupant behaviour //
stochastic
6
9// METHODS // Occupant behaviour //
Detailed stochastic occupancy model describing
- Presence in the rooms
- Artificial lighting
- Electrical appliances
- Heating Setpoint
- Ventilation
7
10// METHODS // workflow //
GEOMETRY MATERIALS HVAC
C / kWh
MATLAB
CLIMATE DATA
MATLAB
SCHEDULES
- PRESENCE
- INTERNAL HEAT GAIN
- THERMOSTAT
- WINDOW OPEN?
EVALUATION THERMAL COMFORT
8
11// METHODS // discomfort indicator //
PPD/PMV (Fanger)
?
Adaptive comfort models
Custom discomfort indicator
Room thermostat operative temperature control
9
12// RESULTS //
10
13// RESULTS //
Heating energy demand
- Inertia has minor influence
- HW ? LW Heating demand on average 4.5
HW ? MW Heating demand on average 1
Thermal Discomfort
- Inertia has major influence
- HW ? LW Discomfort on average 20.4
HW ? MW Discomfort on average 2
11
14// RESULTS //
DETAILED USER BEHAVIOUR
DETERMINISTIC USER BEHAVIOUR
(no window opening)
10
15// RESULTS //
DETAILED USER BEHAVIOUR
DETAILED USER BEHAVIOUR
With sun shading
10
16// RESULTS // Influence of occupancy model //
DETAILED STOCHASTIC DETERMINISTIC CONSTANT
ENERGY 5 1 1
DISCOMFORT 20 43 21
1 0 1
2 10 19
HW ? LW
HW ? MW
14
17// CONCLUSIONS //
18// CONCLUSIONS //
- Impact of thermal inertia
Heating demand minor influence Thermal comfort
important influence
Preferably at least some thermal mass
- Insulations, glazed surface and orientation
more important than building thermal mass
- More detailed model of occupant behaviour may
leed to different design decisions
16