THERMAL INERTIA FOR SMALL SCALE RESIDENTIAL BUILDING - PowerPoint PPT Presentation

1 / 18
About This Presentation
Title:

THERMAL INERTIA FOR SMALL SCALE RESIDENTIAL BUILDING

Description:

Title: Slide 1 Author: Stijn Last modified by: Stijn Created Date: 8/16/2006 12:00:00 AM Document presentation format: On-screen Show (4:3) Other titles – PowerPoint PPT presentation

Number of Views:74
Avg rating:3.0/5.0
Slides: 19
Provided by: Sti141
Category:

less

Transcript and Presenter's Notes

Title: THERMAL INERTIA FOR SMALL SCALE RESIDENTIAL BUILDING


1
THERMAL INERTIA FOR SMALL SCALE RESIDENTIAL
BUILDING
STIJN VERBEKE
stijn.verbeke_at_ua.ac.be
Phd Student, University of Antwerp, Belgium
BAUSIM 2010 CONFERENCE Vienna University of
Technology
2
// PROBLEM DESCRIPTION //
Reduce summer overheating
Fast reaction
Store heat gains
Benefits night setback
1
3
// PROBLEM DESCRIPTION //
?
What is the effect of building thermal inertia in
houses in Belgian climatic conditions?
2
4
// METHODS // Whole Building Simulation //
Energy Plus
  • Conduction finite difference alghoritm
  • Annual simulation
  • Time step 3 minutes
  • Weather data IWEC Brussels

3
5
// METHODS // Model Geometry //
4
6
// METHODS // Model Geometry //
Design Variants
  • Building thermal Mass
  • Orientation
  • Glazed surface
  • Level of thermal insulation K70/K45/K35/K25

5
7
// METHODS // Occupant behaviour //
  • Unpredictable behaviour
  • Various activities
  • User interference

6
8
// METHODS // Occupant behaviour //
stochastic
6
9
// METHODS // Occupant behaviour //
Detailed stochastic occupancy model describing
  • Presence in the rooms
  • Artificial lighting
  • Electrical appliances
  • Heating Setpoint
  • Ventilation

7
10
// METHODS // workflow //
GEOMETRY MATERIALS HVAC
C / kWh
MATLAB
CLIMATE DATA
MATLAB
SCHEDULES
  • PRESENCE
  • INTERNAL HEAT GAIN
  • THERMOSTAT
  • WINDOW OPEN?

EVALUATION THERMAL COMFORT
8
11
// METHODS // discomfort indicator //
PPD/PMV (Fanger)
?
Adaptive comfort models
Custom discomfort indicator

Room thermostat operative temperature control
9
12
// RESULTS //
10
13
// RESULTS //
Heating energy demand
  • Inertia has minor influence
  • HW ? LW Heating demand on average 4.5

HW ? MW Heating demand on average 1
Thermal Discomfort
  • Inertia has major influence
  • HW ? LW Discomfort on average 20.4

HW ? MW Discomfort on average 2
11
14
// RESULTS //
DETAILED USER BEHAVIOUR
DETERMINISTIC USER BEHAVIOUR
(no window opening)
10
15
// RESULTS //
DETAILED USER BEHAVIOUR
DETAILED USER BEHAVIOUR
With sun shading
10
16
// RESULTS // Influence of occupancy model //
DETAILED STOCHASTIC DETERMINISTIC CONSTANT
ENERGY 5 1 1

DISCOMFORT 20 43 21



1 0 1

2 10 19
HW ? LW
HW ? MW
14
17
// CONCLUSIONS //
18
// CONCLUSIONS //
  • Impact of thermal inertia

Heating demand minor influence Thermal comfort
important influence
Preferably at least some thermal mass
  • Insulations, glazed surface and orientation
    more important than building thermal mass
  • More detailed model of occupant behaviour may
    leed to different design decisions

16
Write a Comment
User Comments (0)
About PowerShow.com