Epistemological Framework for Reuse - PowerPoint PPT Presentation

About This Presentation
Title:

Epistemological Framework for Reuse

Description:

Title: Progress Report - OU Author: Enrico Motta Last modified by: Enrico Motta Created Date: 5/16/2000 3:18:35 PM Document presentation format: On-screen Show – PowerPoint PPT presentation

Number of Views:57
Avg rating:3.0/5.0
Slides: 39
Provided by: Enri76
Category:

less

Transcript and Presenter's Notes

Title: Epistemological Framework for Reuse


1
Epistemological Framework for Reuse
Generic Task
Problem Solving Method
Task Ontology
Method Ontology
Mapping Knowledge
Application-specific Problem-Solving Knowledge
Mapping Ontology
Application Configuration
Multi-Functional Domain
Application Model
Domain Ontology
2
A Library of Components for Classification
Problem Solving
3
Main Goals
  • To carry out a knowledge-level analysis of
    classification
  • To develop a practical resource to support the
    development of classification applications
  • To provide a concrete set of components to act as
    a test case for IBROW brokering system and IRS

4
Classification
  • Classification can be seen as the problem of
    finding the solution (class), which best explains
    a set of known facts (observables), according to
    some criterion

Observables
Candidate Sols.
Classification
Solution
Solution Criterion
5
Example
Observables
backgroundgreen areachina...
chinese-granny, dutch-granny, etc..
Classification
Candidate Sols.
Solution
chinese-granny
Criterion
Complete-coverage-criterion (every observable has
to be explained)
6
Observables
  • Observables set_of (Observable)
  • Observable feature, value.
  • Well defined Observables (obs)
  • (f1, v1 ? obs ? f1, v2 ? obs) -gt v1 v2
  • (f1, v1 ? obs) -gt legal_feature_value (f1, v1 )

7
Solutions
  • Solution set_of (Feature_Spec)
  • Feature_Spec Feature, Feature_value_spec
  • Feature_value_spec Unary_Relation
  • Well defined Solution (sol)
  • f1, s1 ? sol ? holds (s1, v1 ) -gt
    legal_feature_value (f1, v1 )

8
Matching
  • Observablef1, v1 matches Solutionsol iff
  • f1, c ? sol ? holds (c, v1 )

9
Matching Sets of Obs to a Solution
  • Sol fsol1, c1...fsolm, cm Obs fob1,
    v1...fobn, vn
  • Four possible cases
  • fj, cj ? sol ? fj, vj ? obs ? holds (cj, vj)
    -gt Explained (fj)
  • fj, cj ? sol ? fj, vj ? obs ? not holds (cj,
    vj) -gt Inconsistent(fj)
  • fj, vj ? obs ? fj, cj ? sol -gt Unexplained
    (fj)
  • fj, vj ? obs ? fj, cj ? sol -gt Missing (fj)

10
Default Match Criterion
  • Match Score
  • Vector ltI, E, U, Mgt
  • Match Comparison Relation
  • S1 (i1, e1, u1, m1) S2 (i2, e2, u2, m2)
  • S1 better_score than S2 iff
  • (i1 lt i2) ?
  • (i2 i1 ? e2 lt e1) ?
  • (i2 i1 ? e2 e1 ? u1 lt u2) ?
  • (i2 i1 ? e2 e1 ? u2 u1 ? m1 lt m2)

11
Other Match Criteria
  • SUBSET-BASED-MATCH-CRITERION
  • Uses subset instead of lt to determine best match
  • ABSTRACTION-AWARE-MATCH-CRITERION
  • Matching mechanism able to handle both
    observables and abstracted data
  • EXPLANATION-CENTRED-MATCH-CRITERION
  • Focuses on explanation power
  • EQUAL-RATING-MATCH-CRITERION
  • Very stupid one, which gives every solution the
    same score

12
Possible Solution Criteria
  • Positive Coverage
  • Some feature is explained and none is
    inconsistent
  • Complete Coverage
  • All features are explained and none is
    inconsistent
  • No missing features
  • No inconsistent features and no missing features

13
Hierarchy of Criteria
Match Criterion
Match Score Mechanism
Match Score Comparison Rel
Macro Score Mechanism
Feature Score Mechanism
14
Observables
  • (def-class observables (set) ?obs
  • "This is simply a set of observables.
  • An important constraint is that there cannot
    be two values for the same feature
  • in a set of observables"
  • iff-def (every ?obs observable)
  • constraint (not (exists (?ob1 ?ob2)
  • (and (member ?ob1
    ?obs)
  • (member ?ob2
    ?obs)

  • (has-observable-feature ?ob1 ?f)

  • (has-observable-feature ?ob2 ?f)

  • (has-observable-value ?ob1 ?v1)

  • (has-observable-value ?ob2 ?v2)
  • (not ( ?v1
    ?v2))))))

15
Solutions
  • (def-class solution () ?x
  • "A solution is a set of feature definitions"
  • iff-def (every ?x feature-definition))
  • (def-class feature-definition () ?x
  • ((has-feature-name type feature)
  • (has-feature-value-spec type unary-relation))
  • constraint (gt (and (has-feature-name ?x ?f)
  • (has-feature-value-spec ?x
    ?spec))
  • (gt (holds ?spec ?v)
  • (legal-feature-value ?f
    ?v))))

16
Solution Criterion
  • (def-class solution-admissibility-criterion () ?c
  • ((applies-to-match-score-type type
    match-score-type)
  • (has-solution-admissibility-relation type
    unary-relation))
  • constraint (gt (and (solution-admissibility-crit
    erion ?c)
  • (has-solution-admissibility-
    relation ?c ?r)
  • (domain ?r ?d))
  • (subclass-of ?d match-score)))

17
Monotonicity of Admissibile Solutions
  • (def-axiom admissibility-is-monotonic
  • "This axiom states that the admissibility
    criterion is monotonic. That is, if a solution,
    ?sol, is admissible, then any solution which is
    better than ?sol will also be admissible"
  • (forall (?sol1 ?sol2 ?obs ?criterion)
  • (gt (and (admissible-solution
  • ?sol1 (apply-match-criterion
    ?criterion ?obs ?sol1)
    ?criterion)
  • (better-match-than ?sol2 ?sol1
    ?obs ?criterion))
  • (admissible-solution
  • ?sol2 (apply-match-criterion
    ?criterion ?obs ?sol2)
    ?criterion))))

18
Complete Coverage
  • (def-instance complete-coverage-admissibility-crit
    erion
  • solution-admissibility-criterion
  • ((applies-to-match-score-type default-match-score
    )
  • (has-solution-admissibility-relation
  • complete-coverage-admissibility-relation)))
  • (def-relation complete-coverage-admissibility-rela
    tion (?score)
  • "a solution should be consistent and explain
    all features"
  • constraint (default-match-score ?score)
  • iff-def (and ( (length (first ?score)) 0)
    no inconsistency
  • ( (length (third ?score)) 0)))
    no unexplained

19
Classification Task Ontology
  • 70 Definitions
  • Provides both a theory of classification and a
    vocabulary to describe classification problems
  • Ontology is separated from task specifications

20
Generic Classification Task
  • Input roles
  • Candidate Solutions, Match Criterion, Solution
    Criterion, Observables
  • Precondition
  • Both observables and candidate solutions have to
    be provided
  • Goal
  • To find a solution from the candidate solutions
    which is admissible with respect to the given
    observables, solution criterion and match
    criterion

21
  • (def-class classification-task (goal-specification
    -task) ?task
  • "Classification is defined here as finding one
    or more admissible solutions
  • out of a predefined solution space, which
    explain the features of a
  • given set of observables, in accordance with a
    given match criterion and
  • solution admissibility criterion.
  • Because different variants of the goal can be
    formulated, the goal
  • of the task is given here only as a default"
  • ((has-input-role value has-candidate-solutions
  • value has-observables
  • value has-match-criterion
  • value has-solution-admissibili
    ty-criterion)
  • (has-output-role value has-solutions)
  • (has-candidate-solutions type solution-space)
  • (has-observables type observables)
  • (has-match-criterion type match-criterion
  • default-value
    default-match-criterion)
  • (has-solution-admissibility-criterion
  • type solution-admissibility-criterion
  • default-value default-solution-admissibility-
    criterion)

22
  • (has-precondition
  • value (kappa (?task)
  • (exists (?x ?y)
  • (and (member ?x
    (role-value ?task 'has-observables))
  • (member ?y
    (role-value
    ?task 'has-candidate-solutions))))))
  • (has-goal-expression
  • default-value
  • (kappa (?task ?sols)
  • (forall ?sol
  • (gt (member
  • ?sol
  • (role-value ?task
    'has-solutions))
  • (admissible-solution
  • ?sol
  • (apply-match-criterion
  • (role-value ?task
    'has-match-criterion)
  • (role-value ?task
    'has-observables)
  • ?sol)
  • (role-value

23
Specific Classification Tasks
  • Single-Solution Classification Task
  • Single-solution assumption
  • Optimal Classification Tasks
  • Goal requires optimality

24
Problem Solving Library
  • Based on heuristic classification model
  • Includes both data-directed and solution-directed
    methods
  • Supported by a method ontology

25
Method Ontology Main Concepts
  • Abstractors
  • Mechanism for performing abstraction on
    observables
  • Abstractor Obs -gt Obs
  • Refiners
  • Mechanism for specialising a solution
  • Refiner Sol -gt Sol
  • Candidate Exclusion Criterion
  • A criterion which is used to decide when a search
    path is a dead-end
  • Default criterion rules out inconsistent solutions

26
Monotonicity of Exclusion Criterion
  • (def-axiom exclusion-is-monotonic
  • (forall (?sol1 ?sol2 ?obs ?criterion)
  • (gt (and (ruled-out-solution
  • ?sol1 (the-match-score ?sol1)
    ?criterion)
  • (not (better-match-than ?sol2
    ?sol1 ?obs

  • ?criterion)))
  • (ruled-out-solution
  • ?sol2 (the-match-score
    ?sol2)?criterion))))

27
Axiom of Congruence
  • (def-axiom CONGRUENT-ADMISSIBILITY-AND-EXCLUSION-C
    RITERIA
  • (forall (?sol ?task)
  • (gt (member ?sol (the-solution-space
    ?task))
  • (not (and (admissible-solution
  • ?sol
  • (the-match-score ?sol)
  • (role-value
  • ?task
  • 'has-solution-admissibil
    ity-criterion))
  • (ruled-out-solution
  • ?sol
  • (the-match-score ?sol)
  • (role-value
  • ?psm
    'has-solution-exclusion-criterion)))))))

28
Three Heuristic Classification PSMs
  • Two Data-directed
  • Admissible Solution Classifier
  • Finds one admissible solution according to the
    given criteria
  • Uses backtracking hill climbing
  • Optimal Classifier
  • Performs complete search looking for optimal
    solution
  • Uses best-first strategy
  • Uses candidate exclusion criterion to prune
    search space
  • One Solution-directed
  • Goes down the solution hierarchy, acquiring
    observables as needed
  • Ask for observables with max discrimination power

29
Four Assumptions in Main PSMs
  • No cycles in abstraction hierarchy
  • No cycles in refinement hierarchy
  • At least one class in the solution space is an
    admissible solution
  • The solution refinement hierarchy is consistent
    with the candidate exclusion criterion. That is
    if sol is ruled out, all refinements of sol can
    also be ruled out

30
Task-Method Hierarchy
31
Example
  • Apple Domain
  • Originally developed in Amsterdam
  • Solutions Apple Types granny, noble,
    delicious...
  • Hierarchy of Apple Types
  • Features bkg-colour, fg-colour, rusty....
  • Pretty trivial really!

32
(No Transcript)
33
Mapping Solutions and Obs to Apples
  • (def-relation-mapping solution up
  • ((solution ?x)
  • if
  • (or ( ?x apple)
  • (subclass-of ?x apple))))
  • (def-relation-mapping observable up
  • ((observable ?x)
  • if
  • (or ( ?X (?f ?v ?obs))
  • ( ?x (?f ?v)))))

34
More Relation Mappings
  • (def-relation-mapping has-observable-feature up
  • ((has-observable-feature ?x ?f)
  • if
  • (or ( ?X (?f ?v ?obs)) ( ?x (?f ?v)))))
  • (def-relation-mapping has-observable-value up
  • ((has-observable-value ?x ?v)
  • if
  • (or ( ?X (?f ?v ?obs)) ( ?x (?f ?v)))))
  • (def-relation-mapping directly-abstracts-from up
  • ((directly-abstracts-from ?ob ?obs)
  • if
  • ( ?ob (?f ?v ?obs))))

35
Sample Abstractor
  • (def-instance sugar-abstractor abstractor
  • ((has-body '(lambda (?obs)
  • (in-environment
  • ((?v . (observables-feature-value
    ?obs 'sugar)))
  • (cond ((gt ?v 70)
  • (list-of 'sweet-level
    'high
  • (list-of
    (list-of 'sugar ?v))))
  • ((and (lt ?v 70) (gt ?v 40))
  • (list-of 'sweet-level
    'medium
  • (list-of
    (list-of 'sugar ?v))))
  • ((lt ?v 40)
  • (list-of 'sweet-level
    'low
  • (list-of
    (list-of 'sugar ?v))))))))
  • (applicability-condition
  • (kappa (?obs) (member 'sugar
  • (all-features-in-observa
    bles
  • ?obs))))))

36
Generic (reusable) Refiner
  • (def-instance refinement-through-subclass-of-links
    refiner
  • "If the solution space is specified by means of
    classes arranged in a subclass-of hierarchy, then
    this is a good refiner to use"
  • ((has-body '(lambda (?sol)
  • (setofall ?sub (direct-subclass-of
  • ?sub ?sol))))
  • (applicability-condition
  • (kappa (?sol) (and (class ?sol)
  • (exists ?sub
  • (direct-subclass-of ?sub
    ?sol)))))))

37
Evaluation/Results
  • Library provides an analytical tool to understand
    classification problem solving
  • Library tested on a number of domains
  • ECAI Paper classification
  • Paleontology
  • Medical Diagnosis
  • No changes the organization of library needed
  • Only adding new components, e.g. new match
    criteria
  • Used by van Harmelen and Ten Teije to study
    automatic PSM adaptation

38
(No Transcript)
Write a Comment
User Comments (0)
About PowerShow.com