Zwick - PowerPoint PPT Presentation

About This Presentation
Title:

Zwick

Description:

(aka, Conditional hardness for satisfiable 3-CSPs) Ryan O Donnell & Yi Wu Carnegie Mellon University – PowerPoint PPT presentation

Number of Views:51
Avg rating:3.0/5.0
Slides: 62
Provided by: Ryan1159
Learn more at: http://www.cs.cmu.edu
Category:
Tags: hardness | zwick

less

Transcript and Presenter's Notes

Title: Zwick


1
Zwicks Conjectureis implied by most of Khots
Conjectures
(aka, Conditional hardness for satisfiable
3-CSPs)
Ryan ODonnell Yi Wu Carnegie Mellon University
2
  • Zwicks Conjecture 1997
  • NP ? naPCP1,5/8?(O(log n), 3).
  • Every language in NP has a probabilistically
    checkable proof system of polynomial size in
    which the verifier queries 3 bits of the proof
    nonadaptively, accepts correct proofs with
    probability 1, and accepts incorrect proofs with
    probability at most 5/8?.

For all ? gt 0,
3
  • Zwicks Conjecture 1997
  • NP ? naPCP1,5/8?(O(log n), 3).
  • Given a satisfiable 3CSP, its NP-hard to
    satisfy 5/8? of the constraints.

4
  • 3CSPs

5
  • Zwicks Conjecture 1997
  • NP ? naPCP1,5/8?(O(log n), 3).
  • 3 minimal.
  • 1 natural, for proof systems.
  • na natural, for CSP
    inapproximability.
  • 5/8 this is the conjecture.

6
  • Approximating Satisfiable 3CSPs

NP-hard
In BPP
0
1
1/8
Cook71
Johnson73
7
  • Approximating Satisfiable 3CSPs

NP-hard
In BPP
1/8
.999999
AS92,ALMSS92
Johnson73
8
  • Approximating Satisfiable 3CSPs

NP-hard
In BPP
.299
.8999
BGS95
BGS95
9
  • Approximating Satisfiable 3CSPs

NP-hard
In BPP
.367
.8999
TSSW96
BGS95
10
  • Approximating Satisfiable 3CSPs

NP-hard
In BPP
.367
3/4?
HĂĄstad97
TSSW96
11
  • Approximating Satisfiable 3CSPs

NP-hard
In BPP
.514
3/4?
HĂĄstad97
Trevisan97
12
  • Approximating Satisfiable 3CSPs

NP-hard
In BPP
5/8
3/4?
HĂĄstad97
Zwick97
13
  • Zwicks Conjecture 1997
  • NP ? naPCP1,5/8?(O(log n), 3).
  • Given a satisfiable 3CSP, its NP-hard to
    satisfy 5/8? of the constraints.

14
  • Approximating Satisfiable 3CSPs

NP-hard
In BPP
5/8
3/4?
HĂĄstad97
Zwick97
15
  • Approximating Satisfiable 3CSPs

NP-hard
In BPP
5/8
20/27?
KS06
Zwick97
16
  • Approximating Satisfiable 3CSPs

NP-hard
Assuming any Khot D-to-1 Conjecture
In BPP
5/8
20/27?
KS06
Zwick97
OW09
17
  • Remind me of Khots D-to-1 Conjectures?

18
  • Label-Cover
  • p1(V1) U4p2(V3) U2p3(V3) U9p4(V2) U4

Ui vbls over m
Input
Vi vbls over Dm
pj maps are D-to-1
Razs Theorem ? d gt 0, if m
poly(1/d) and D poly(1/d), then NP-hard to
tell satble from d-satble.
19
  • Label-Cover
  • p1(V1) U4p2(V3) U2p3(V3) U9p4(V2) U4

Ui vbls over m
Input
Vi vbls over Dm
pj maps are D-to-1
2-to-1 Conjecture Khot02 ? d gt 0,
if m poly(1/d) and D 2, then NP-hard
to tell satble from d-satble.
20
  • Label-Cover
  • p1(V1) U4p2(V3) U2p3(V3) U9p4(V2) U4

Ui vbls over m
Input
Vi vbls over Dm
pj maps are D-to-1
3-to-1 Conjecture Khot02 ? d gt 0,
if m poly(1/d) and D 3, then NP-hard
to tell satble from d-satble.
21
  • Label-Cover
  • p1(V1) U4p2(V3) U2p3(V3) U9p4(V2) U4

Ui vbls over m
Input
Vi vbls over Dm
pj maps are D-to-1
100-to-1 Conjecture Khot02 ? d
gt 0, if m poly(1/d) and D 100,
then NP-hard to tell satble from d-satble.
22
  • Label-Cover
  • p1(V1) U4p2(V3) U2p3(V3) U9p4(V2) U4

Ui vbls over m
Input
Vi vbls over Dm
pj maps are D-to-1
Unique Games Conjecture Khot02 ? d gt 0,
if m poly(1/d) and D 1, NP-hard to tell
(1-d)-satble from d-satble.
23
  • Conjectures
  • 2-to-1 ? 3-to-1 ? 4-to-1 ?
  • ? 100-to-1 ?
  • ? poly(1/d)-to-1 (true)
  • None known comparable with UGC.

24
  • Why not use Raghavendra08?
  • UGC-based, hence cant address theory of
    satisfiable instances
  • Shows Alg/UGC-hard match at some number
    but what is the number?

25
  • Why not use Raghavendra08?
  • Shows Alg/UGC-hard match at some number
    but what is the number?
  • UGC-based, hence cant address theory of
    satisfiable instances

26
  • Challenges
  • Shows Alg/UGC-hard match at some number
    but what is the number?
  • UGC-based, hence cant address theory of
    satisfiable instances

? Design a 1 vs. 5/8 Dictator Test for D-to-1
? Overcome perfect correlation, pairwise
dependence in Invariance Principle arguments
27
  • Take-home message

If you can design a Dictator Test that
seems to work you
can make it work.
28
  • Challenges

Design a 1 vs. 5/8 Dictator Test for D-to-1
Overcome perfect correlation, pairwise
dependence in Invariance Principle arguments
29
  • Challenges

Design a 1 vs. 5/8 Dictator Test for D-to-1
Overcome perfect correlation, pairwise
dependence in Invariance Principle arguments
30
  • Designing a 1 vs. 5/8 Dictator Test
  • Q Why is Zwicks 3CSP alg. stuck at 5/8?
  • A The Not-Two predicate

Linear/random 5/8 SDP alg 5/8
31
  • Designing a 1 vs. 5/8 Dictator Test
  • Q (HĂĄstad01) 1 vs. 5/8? hardness for NTW?
  • The Not-Two predicate

32
  • Designing a 1 vs. 5/8 Dictator Test
  • Q (HĂĄstad01) 1 vs. 5/8? hardness for NTW?
  • A (Our main thm.) Yes, assuming D-to-1 Conj.
  • for any const. D lt 8.

33
  • Designing a 1 vs. 5/8 Dictator Test
  • HĂĄs97 gave a 1-? vs. 1/2? Dictator Test
    for D-to-1, D arbitrary, using XOR.
  • We give a 1 vs. 5/8? Dictator
    Test for D-to-1, D constant, using NTW.

34
  • D-to-1 Dictator Tests using F
  • Somehow pick corrd strings x?0,1m,
    y,z?0,1Dm.
  • Test whether F( f(x), g(y), g(z) ).

m
f (
x
1
0
1
1
0
g (
y
1
0
0
0
1
1
0
0
0
0
1
0
0
0
1
g (
z
1
0
0
0
0
0
0
1
0
1
1
0
1
0
0
D 3
35
  • D-to-1 Dictator Tests using F
  • Completeness
  • If f is ith Dictator, g is jth Dictator,
    j matches i, then Prx,y,z F( f(x),
    g(y), g(z) ) c.
  • Soundness
  • If f and g odd, T1-? f and T1-? g have no
    matching influential variables in common,
    then Prx,y,z F( f(x), g(y), g(z) ) s?.

36
  • Completeness
  • If f is ith Dictator, g is jth Dictator,
    j matches i, then Prx,y,z F( f(x),
    g(y), g(z) ) c.
  • Soundness
  • If f and g odd, T1-? f and T1-? g have no
    matching influential variables in common,
    then Prx,y,z F( f(x), g(y), g(z) ) s?.

HĂĄstad F XOR, c 1-?, s 1/2
37
  • Completeness
  • If f is ith Dictator, g is jth Dictator,
    j matches i, then Prx,y,z F( f(x),
    g(y), g(z) ) c.
  • Soundness
  • If f and g odd, T1-? f and T1-? g have no
    matching influential variables in common,
    then Prx,y,z F( f(x), g(y), g(z) ) s?.

Us F NTW, c 1, s 5/8
38
  • HĂĄstads Dictator Test using XOR
  • Somehow pick corrd strings x?0,1m,
    y,z?0,1Dm.
  • Test whether XOR( f(x), g(y), g(z) ).

m
f (
x
1
0
1
1
0
g (
y
1
0
0
0
1
1
0
0
0
0
1
0
0
0
1
g (
z
1
0
0
0
0
0
0
1
0
1
1
0
1
0
0
D 3
39
  • HĂĄstads Dictator Test using XOR
  • Pick blocks from some dist. on 0,1 x 0,1D x
    0,1D.
  • Test whether XOR( f(x), g(y), g(z) ).

m
f (
x
1
0
1
1
0
g (
y
1
0
0
0
1
1
0
0
0
0
1
0
0
0
1
g (
z
1
0
0
0
0
0
0
1
0
1
1
0
1
0
0
D 3
40
  • HĂĄstads Dictator Test using XOR
  • Blocks x1, y1,y2,,yD unif. random, zi
    x1?yi?1.
  • Test whether XOR( f(x), g(y), g(z) ).

m
f (
x
1
0
1
1
0
g (
y
1
0
0
0
1
1
0
0
0
0
1
0
0
0
1
g (
z
1
0
0
0
0
0
0
1
0
1
1
0
1
0
0
D 3
41
  • HĂĄstads Dictator Test using XOR
  • Blocks x1, y1,y2,,yD unif. random, zi
    x1?yi?1.
  • Tweak Rerandomize each zi with prob. 2?.

m
f (
x
1
0
1
1
0
g (
y
1
0
0
0
1
1
0
0
0
0
1
0
0
0
1
g (
z
1
0
0
0
0
0
0
1
0
1
1
0
1
0
1
D 3
42
  • Completeness
  • If f is ith Dictator, g is jth Dictator,
    j matches i, then Prx,y,z F( f(x),
    g(y), g(z) ) c.
  • Soundness
  • If f and g odd, T1-? f and T1-? g have no
    matching influential variables in common,
    then Prx,y,z F( f(x), g(y), g(z) ) s?.

HĂĄstad F XOR, c 1-?, s 1/2
43
  • Completeness
  • Each column (xi,yj,zj) satisfies XOR w.p.
    1-?.
  • Soundness
  • If f and g odd, T1-? f and T1-? g have no
    matching influential variables in common,
    then Prx,y,z F( f(x), g(y), g(z) ) s?.

HĂĄstad F XOR, c 1-?, s 1/2
44
  • Completeness
  • Each column (xi,yj,zj) satisfies XOR w.p.
    1-?.
  • Soundness
  • Seems like it should work. If f g
    Majority, or f g Parity then Prx,y,z
    XOR( f(x), g(y), g(z) ) 1/2o(1).

HĂĄstad F XOR, c 1-?, s 1/2
45
  • HĂĄstads Dictator Test using XOR
  • At a technical level
  • HĂĄstad does direct Fourier Analysis.
  • We sketch an Invariance Principle proof which
    works for D O(1).
  • (Have to reprove MOO05,Mos08.)

46
  • HĂĄstads Dictator Test using XOR
  • Blocks x1, y1,y2,,yD unif. random, zi
    x1?yi?1.
  • Tweak Rerandomize each zi with prob. 2?.
  • Within a block, imperfect correlation between x
    (y,z).
  • So E f(x) g(y) g(z) E Tf(x) Tg(y)
    Tg(z) .

f (
x
1
0
1
1
0
g (
y
1
0
0
0
1
1
0
0
0
0
1
0
0
0
1
g (
z
1
0
0
0
0
0
0
1
0
1
1
0
1
0
1
47
  • HĂĄstads Dictator Test using XOR
  • Blocks x1, y1,y2,,yD unif. random, zi
    x1?yi?1.
  • Tweak Rerandomize each zi with prob. 2?.
  • Invariance Tf, Tg have no matching influential
    vbl.
  • ? can change dist. to anything w/ same 2-wise
    corrs.

f (
x
1
0
1
1
0
g (
y
1
0
0
0
1
1
0
0
0
0
1
0
0
0
1
g (
z
1
0
0
0
0
0
0
1
0
1
1
0
1
0
1
48
  • HĂĄstads Dictator Test using XOR
  • Blocks x1, y1,y2,,yD unif. random, zi
    x1?yi?1.
  • Then rerandomize x1.
  • Tweak Rerandomize each zi with prob. 2?.
  • E Tf(x) Tg(y) Tg(z) E Tf(x) E Tg(y)
    Tg(z) 0.

f (
x
1
1
0
1
1
g (
y
1
0
0
0
1
1
0
0
0
0
1
0
0
0
1
g (
z
1
0
0
0
0
0
0
1
0
1
1
0
1
0
1
49
  • Completeness
  • Each column (xi,yj,zj) satisfies XOR w.p.
    1-?.
  • Soundness
  • Seems like it should work. If f g
    Majority, or f g Parity then E f(x)
    g(y) g(z) 0.

HĂĄstad F XOR, c 1-?, s 1/2
50
  • Completeness
  • Each column (xi,yj,zj) satisfies NTW w.p. 1.
  • Soundness
  • Seems like it should work. If f g
    Majority, or f g Parity then E f(x)
    g(y) g(z) 0.

Us F NTW, c 1, s 5/8
51
  • HĂĄstads Dictator Test using XOR
  • Blocks x1, y1,y2,,yD unif. random, zi
    x1?yi?1.
  • For NTW completeness, okay if column is (0,0,0).

f (
x
1
0
1
1
0
g (
y
1
0
0
0
1
1
0
0
0
0
1
0
0
0
1
g (
z
1
0
0
0
0
0
0
1
0
1
1
0
1
0
0
52
  • Our Dictator Test using NTW
  • Blocks x1, y1,y2,,yD unif. random, zi
    x1?yi?1.
  • Tweak W.p. ?, make a random column all x1.

f (
x
1
0
1
1
0
g (
y
1
0
0
0
1
1
0
0
0
0
1
0
0
0
1
g (
z
1
0
0
0
0
0
0
1
0
1
1
0
1
0
0
53
  • Our Dictator Test using NTW
  • Blocks x1, y1,y2,,yD unif. random, zi
    x1?yi?1.
  • Tweak W.p. ?, make a random column all
    x1.
  • Unfortunately perfect correlation between x
    (y,z).
  • (Even for D 2. Imperfect for D 1, hence
    OW09a.)

f (
x
1
0
1
1
0
g (
y
1
0
1
0
1
1
0
0
0
0
1
0
0
0
1
g (
z
1
0
1
0
0
0
0
1
0
1
0
0
1
0
0
54
  • Our Dictator Test using NTW
  • Blocks x1, y1,y2,,yD unif. random, zi
    x1?yi?1.
  • Tweak W.p. ?, make a random column all
    x1.
  • Escape hatch imperfect correlation between
    (x,y) z.
  • So E f(x) g(y) g(z) E f(x) g(y) Tg(z)
    .

f (
x
1
0
1
1
0
g (
y
1
0
1
0
1
1
0
0
0
0
1
0
0
0
1
g (
z
1
0
1
0
0
0
0
1
0
1
0
0
1
0
0
55
  • Our Dictator Test using NTW
  • Blocks x1, y1,y2,,yD unif. random, zi
    x1?yi?1.
  • Tweak W.p. ?, make a random column all
    x1.
  • Escape hatch imperfect correlation between
    (x,y) z.
  • So E f(x) g(y) g(z) E f(x) Tg(y) Tg(z)
    .

f (
x
1
0
1
1
0
g (
y
1
0
1
0
1
1
0
0
0
0
1
0
0
0
1
g (
z
1
0
1
0
0
0
0
1
0
1
0
0
1
0
0
56
  • Our Dictator Test using NTW
  • Blocks x1, y1,y2,,yD unif. random, zi
    x1?yi?1.
  • Tweak W.p. ?, make a random column all
    x1.
  • So E f(x) g(y) g(z) E f(x) Tg(y) Tg(z)
    .
  • Now noise on (y,z) ? as if imperfect corr. for
    x (y,z).

f (
x
1
0
1
1
0
g (
y
1
0
1
0
1
1
0
0
0
0
1
0
0
0
1
g (
z
1
0
1
0
0
0
0
1
0
1
0
0
1
0
0
57
  • Our Dictator Test using NTW
  • Blocks x1, y1,y2,,yD unif. random, zi
    x1?yi?1.
  • Tweak W.p. ?, make a random column all
    x1.
  • So E f(x) g(y) g(z) E f(x) Tg(y) Tg(z)
    .
  • E Tf(x)
    Tg(y) Tg(z) .

f (
x
1
0
1
1
0
g (
y
1
0
1
0
1
1
0
0
0
0
1
0
0
0
1
g (
z
1
0
1
0
0
0
0
1
0
1
0
0
1
0
0
58
  • Our Dictator Test using NTW
  • Blocks x1, y1,y2,,yD unif. random, zi
    x1?yi?1.
  • Tweak W.p. ?, make a random column all
    x1.
  • Invariance Tf, Tg have no matching
    influential vbl.
  • ? can change dist. to anything w/ same 2-wise
    corrs.

f (
x
1
0
1
1
0
g (
y
1
0
1
0
1
1
0
0
0
0
1
0
0
0
1
g (
z
1
0
1
0
0
0
0
1
0
1
0
0
1
0
0
59
  • Our Dictator Test using NTW
  • Blocks x1, y1,y2,,yD unif. random, zi
    x1?yi?1.
  • Then rerandomize x1.
  • Tweak W.p. ?, make a random column all
    x1.
  • E Tf(x) Tg(y) Tg(z) E Tf(x) E Tg(y)
    Tg(z) 0.

f (
x
0
0
0
1
0
g (
y
1
0
0
0
1
1
0
0
0
0
1
0
0
0
1
g (
z
1
0
0
0
0
0
0
1
0
1
0
0
1
0
0
60
  • Take-home message

If you can design a Dictator Test that
seems to work you
can make it work.
61
  • Open technical problems
  • We need 1 vs. 2-2O(D2) hardness for D-to-1.
    Probably could get away with 2-poly(D). With
    1/poly(D)?
  • Use D-to-1 for other problems.Max-NAE3 with
    perfect completeness?
Write a Comment
User Comments (0)
About PowerShow.com