Chair Professor Chin-Chen Chang - PowerPoint PPT Presentation

1 / 27
About This Presentation
Title:

Chair Professor Chin-Chen Chang

Description:

Secrets Sender Receiver Internet Steganography ... modification directions, Technique Report of Feng ... Matrix LSB of Cover Image Secret Data 21 30 ... – PowerPoint PPT presentation

Number of Views:73
Avg rating:3.0/5.0
Slides: 28
Provided by: cir112
Category:

less

Transcript and Presenter's Notes

Title: Chair Professor Chin-Chen Chang


1
??????????
  • Chair Professor Chin-Chen Chang
  • Feng Chia University
  • National Chung Cheng University
  • National Tsing Hua University
  • http//msn.iecs.fcu.edu.tw/ccc

1
2
Data Embedding
Secrets
Internet
Sender
?Steganography - prison problem ?Reversible
data hiding - Medical image - Military
image -Quality and capacity
Receiver
3
Magic Matrix
F(p1, p2) (1p1 2p2) mod (2n1)
p2
n2, F(2, 3)3
255
0
1
2
3
4
0


s1
0
1
2
3
4
4
3
0
1
2
3
4
3
1
2
3
4
0
1
2
4
1
2
3
4
0
1
2
0
1
2
3
4

0
0
p1
255
0
1
2
3
4
Zhang, X. P. and Wang, S. Z., Efficient
Steganographic Embedding by Exploiting
Modification Direction, IEEE communications
letters, vol. 10, no. 11, pp. 1-3, Nov., 2006.
4
Data Hiding Using Sudoku (1/8)
  • Spatial domain data embedding
  • Sudoku
  • A logic-based number placement puzzle

5
Data Hiding Using Sudoku (2/8)
  • Property
  • A Sudoku grid contains nine 3 3 matrices, each
    contains different digits from 1 to 9.
  • Each row and each column of a Sudoku grid also
    contain different digits from 1 to 9.

Possible solutions 6,670,903,752,021,072,936,960
(i.e. 6.6711021)
6
Data hiding using Sudoku (3/8) Review Zhang and
Wangs method (Embedding)
Extracting function
8 7 9 4
79 54 55 11
20 21 12 24
12 10 10 9
Secret data 1000 1011
p2
255
0
1
2
3
4
0
1
2
3
4
0
1
10002 1 35














11
2
3
4
0
1
2
3
4
0
1
2
3
2

10
0
1
2
3
4
0
1
2
3
4
0
1
0
Cover image

9
3
4
0
1
2
3
4
0
1
2
3
4
3

8
1
2
3
4
0
1
2
3
4
0
1
2
1

2
7
4
0
1
2
3
4
0
1
3
4
0
4

7 7 10 4



6
2
3
4
0
1
2
3
4
0
1
2
3
2

5
0
1
2
3
4
0
1
2
3
4
0
1
0

4
3
4
0
1
2
3
4
0
2
3
4
3
1

3
1
2
3
4
0
1
2
3
4
0
1
2
1

2
4
0
1
2
3
4
0
1
2
3
4
0
4

1
2
3
4
0
1
2
3
4
0
1
2
3
2

0
1
2
3
4
0
0
1
2
3
4
0
1
0
Stego image
p1
0
1
2
3
4
5
6
7
8
9
10
11
255

Magic Matrix
7
Data hiding using Sudoku (4/8) Review Zhang and
Wangs method (Extracting)
p2
7 7 10 4



255
0
1
2
3
4
0
1
2
3
4
0
1














11
2
3
4
0
1
2
3
4
0
1
2
3
2

10
0
1
2
3
4
0
1
2
3
4
0
1
0

9
3
4
0
1
2
3
4
0
1
2
3
4
3

8
1
2
3
4
0
1
2
3
4
0
1
2
1
Stego image

7
4
0
1
2
3
4
0
1
2
3
4
0
4

6
2
3
4
0
1
2
3
4
0
1
2
3
2

5
0
1
2
3
4
0
1
2
3
4
0
1
0

4
3
4
0
1
2
3
4
0
1
2
3
4
3

3
1
2
3
4
0
1
2
3
4
0
1
2
1

2
4
0
1
2
3
4
0
1
2
3
4
0
4

1
2
3
4
0
1
2
3
4
0
1
2
3
2

0
1
2
3
4
0
0
1
2
3
4
0
1
0
p1
0
1
2
3
4
5
6
7
8
9
10
11
255

Magic Matrix
8
Data hiding using Sudoku (5/8)
- 1
Reference Matrix M
9
Data hiding using Sudoku (Embedding) (6/8)
8 7 11 12
79 54 55 11
20 21 12 24
12 10 10 9
Secret data 011 001 10
Cover Image
10
Data hiding using Sudoku (Embedding) (7/8)
8 7 11 12
79 54 55 11
20 21 12 24
12 10 10 9
Secret data 011 001 10
Cover Image
11
Data hiding using Sudoku (Extracting) (8/8)
9 7 9 14



Stego Image
Extracted data 279 011 0012
12
Magic Matrix
t bits per pixel pair
r F(pi, pj) ((t-1) pi t pj ) mod t2
Duc, K., Chang, C. C., A steganographic scheme
by fully exploiting modification directions,
Technique Report of Feng-Chia University.
13
Color retinal image
Segmented image
14
Wet Paper Coding
Key
Fridrich, J. Goljan, M., Lisonek, P. and Soukal,
D.,  Writing on Wet Paper, IEEE Transactions on
Signal Processing, vol. 53, no. 10, pp. 3923-
3935, 2005   
15
Wet Paper Coding (2/2)
The important area is marked as wet pixel
21
30
30
Cover Image
Random Matrix
LSB of Cover Image
Secret Data
16
Wet Paper Coding with XOR Operation
Key
Eight groups
31, 35, 31, 32, 34, 35, 33, 32, 33,
35, 35, 33, 33, 34, 32, 32
Secrets 0 1 0 1 0 1 1 1
At least one dry pixel
17
Secret Extracting
LSB(30) 0 LSB(35) ?LSB(31) ? LSB(33) 1 LSB(34)
?LSB(35) ?LSB(33) 0 LSB(33) 1 LSB(32)
0 LSB(35) ?LSB(34) 1 LSB(33) ?LSB(33) ?LSB(35)
1 LSB(32) ?LSB(33) 1
18
Proposed Scheme (1/6)
Key
  • Three types
  • Restricted Pairs of Wet Pixels (RPW)
  • - Non-restricted Pairs of Wet Pixels (NRPW)
  • - Pairs of Dry Pixels (DP)

Embeddable
S 3, 1, 2, 3, 1, 0, 0
19
Proposed Scheme (2/6)
(p1, p2) (31, 35), n2
S3
(p1', p2') (33, 35)
20
Proposed Scheme (3/6)
S1
(p1, p2) (31, 32), n2
(p1', p2') (31, 31)
21
Proposed Scheme (4/6)
(p1, p2) (33, 32), n2
S2
(p1', p2') (34, 32)
22
Proposed Scheme (5/6)
23
r F(pi, pj) ((t-1) pi t pj ) mod t2
t2
4
1
5
3 6
7
S 3, 1, 2, 3, 1, 0, 0
2
24
Experimental Results (1/3)
t 3 (304 Kb) PSNR 46.93
t 2 (192 Kb) PSNR 56.18
Cover Image
t 4 (384 Kb) PSNR 44.96
t 6 (496 Kb) PSNR 38.72
t 8 (576 Kb) PSNR 34.58
25
Experimental Results (2/3)
26
Experimental Results (3/3)
3 Fridrich, J., Goljan, M., Lisonek, P. and
Soukal, D., Writing on wet paper, IEEE
Transactions on Signal Processing, vol. 53, no.
10, pp. 3923-3935, 2005.
27
Conclusions
  • A novel steganographic technique with the fully
    exploiting modification (FEM) is proposed for
    digital images.
  • The experiments confirm that our proposed scheme
    can achieve the goals of high capacity and good
    visual quality.
Write a Comment
User Comments (0)
About PowerShow.com