The Chv - PowerPoint PPT Presentation

1 / 27
About This Presentation
Title:

The Chv

Description:

The Chv tal Dual of a Pure Integer Programme H.P.Williams London School of Economics – PowerPoint PPT presentation

Number of Views:36
Avg rating:3.0/5.0
Slides: 28
Provided by: lse72
Category:

less

Transcript and Presenter's Notes

Title: The Chv


1
The Chvátal Dual of a Pure Integer Programme
  • H.P.Williams
  • London School of Economics

2
Duality in LP and IP
  • The Value Function of an LP
  • Minimise
    x2

  • subject to 2x1 x2 gt b1


  • 5x1 2x2 lt b2


  • -x1 x2 gt b3


  • x1 , x2 gt 0
  • Value Function of LP is Max( 5b1 - 2b2 , 1/3(
    b1 2b3) , b3)
  • If b1 13, b2 30, b3 5 we have Max( 5,
    72/3 , 5 ) 72/3
  • ,
  • Consistency Tester is Max( 2b1 b2 , -b2 , -b2
    2b3 ) lt 0 giving Max( -4, -30, -20) lt 0 .
  • (5, -2, 0), (1/3, 0, 2/3), (0, 0, 1) are
    vertices of Dual Polytope .

3
Duality in LP and IP
  • The Value Function of an IP

  • Minimise x2
  • subject to
    2x1 x2 gt b1

  • 5x1 2x2 lt b2

  • -x1 x2 gt
    b3

  • x1 , x2
    gt 0 and integer
  • Value Function of IP is
  • Max( 5b1 - 2b2 ,1/3( b1 2b3) , b3 , b1
    2 1/5 (-b2 2 1/3(b1 2b3) ) )
  • This is known as a Gomory Function.
  • The component expressions are known as Chv?tal
    Functions .
  • Consistency Tester same as for LP (in this
    example)

4
IP Solution
  • 9 Optimal IP Solution (2 , 9) .
    Min x2
  • c3
    st 2x1 x2 gt 13
  • 8 . . c1 . .
    5x1 2x2 lt 30
  • Optimal LP Solution (2 2/3 , 7 2/3)

    -x1 x2 gt 5
  • 7 . . . . c2 .
    x1 , x2 gt 0
  • x2
  • 6 . . . .
    .
  • 5 . . . . .
  • 0 1 2 3 4
    x1


5
IP Solution after removing constraint 1

  • Min x2

  • 8 c1 . . . c3
    st 5x1 2x2 lt 30



  • -x1 x2 gt 5
  • . . .
    . x1 , x2 gt 0
  • x2 7 . . .
  • 6 . . . .
    . c2
  • Optimal IP Solution (0 , 5)
  • 5
  • 0 1 2 3
    4 x1


6
IP Solution
  • 9 Optimal IP Solution (2 , 9) .
    Min x2
  • c3
    st 2x1 x2 gt 13
  • 8 . . c1 . .
    5x1 2x2 lt 30
  • Optimal LP Solution (2 2/3 , 7 2/3)

    -x1 x2 gt 5
  • 7 . . . . c2 .
    x1 , x2 gt 0
  • x2
  • 6 . . . .
    .
  • 5 . . . . .
  • 0 1 2 3 4
    x1


7
IP Solution after removing constraint 2
  • 9 . . .
    Min x2
  • c1 c3
    st 2x1 x2 gt 13
  • 8 . . . . Optimal IP
    Solution (3, 8)

  • -x1 x2 gt 5
  • 7 . . . .
    . x1 , x2 gt 0
  • x2
  • 6 . . . .
    .
  • 5 . . . . .
    x1
  • 0 1 2 3 4


8
IP Solution
  • 9 Optimal IP Solution (2 , 9) .
    Min x2
  • c3
    st 2x1 x2 gt 13
  • 8 . . c1 . .
    5x1 2x2 lt 30
  • Optimal LP Solution (2 2/3 , 7 2/3)

    -x1 x2 gt 5
  • 7 . . . . c2 .
    x1 , x2 gt 0
  • x2
  • 6 . . . .
    .
  • 5 . . . . .
  • 0 1 2 3 4
    x1


9
IP Solution after removing constraint 3
  • 9 . . . .
    Min x2

  • st 2x1 x2 gt 13
  • 8 . . . . .
    5x1 2x2 lt 30
  • c1 c2
    x1 ,
    x2 gt 0
  • 7 . . . .
    .
  • x2
  • 6 . . . .
    .
  • 5 . . . .
    .Optimal IP Solution (4 , 5)
  • 0 1 2 3 4
    x1

10
IP Solution
  • 9 Optimal IP Solution (2 , 9) .
    Min x2
  • c3
    st 2x1 x2 gt 13
  • 8 . . c1 . .
    5x1 2x2 lt 30
  • Optimal LP Solution (2 2/3 , 7 2/3)

    -x1 x2 gt 5
  • 7 . . . . c2 .
    x1 , x2 gt 0
  • x2
  • 6 . . . .
    .
  • 5 . . . . .
    x1
  • 0 1 2 3 4


11
Gomory and Chvátal Functions
  • Max( 5b1-2b2, 1/3(b1 2b3), b3 , b1 2 1/5
    (-b2 2 1/3(b1 2b3) ) )
  • If b113, b230, b35 we have Max(5,8,5,9)9
  • Chvátal Function b1 2 1/5 (-b2 2 1/3(b1
    2b3) ) determines
  • the optimum.
  • LP Relaxation is 19/15 b1 - 2/5 b2 8/15 b2
  • (19/15, -2/5, 8/15) is an interior point of dual
    polytope but
  • (5, -2, 0), (1/3, 0, 2/3) and (0,0,1) are
    vertices corresponding to possible
  • LP optima (for different bi )

12
Pricing by optimal Chvátal FunctionIntroduce new
variable X3
  • Function
  • ?b1 ?b31
  • prices out X3
  • Solution
  • X1 22/3 , X2 72/3 , X3 0
  • LP Case
  • Minimise X2 1.5X3
  • Subject to 2X1X2 X3 gt13
  • 5X12X2X3lt30
  • -X1X2 X3 gt5
  • X1 , X2 gt 0

IP Case Minimise X2 1.5X3 Subject to 2X1X2 X3
gt13 5X12X2X3lt30
-X1X2 X3 gt5 X1 , X2
gt 0 and integer
Function b1 2 1/5 (-b2 2 1/3(b1 2b3))
3 does not price out X3 Solution X1 3,
X2 7, X3 1
13
Why are valuations on discrete resources of
interest ?
  • Allocation of Fixed Costs
  • Maximise ?j pi xi - f y
  • st xi - Di y lt 0
    for all I
  • y e 0,1 depending on whether facility built.
  • f is fixed cost.
  • xi is level of service provided to i (up to level
    Di )
  • pi is unit profit to i.
  • A dual value vi on xi - Di y lt 0 would
    result in
  • Maximise ?j (pi vi ) xi - (f
    (?i D i v i) y
  • Ie an allocation of the fixed cost back to the
    consumers

14
A Representation for Chvátal Functions


  • b1 b3
    - b2



  • 1
    2
  • Multiply and add
  • on arcs

    1

  • 1
  • Divide and round
  • up on nodes






  • 2

3
5
1
15
Simplifications sometimes possible
  • 2/7 7/3 n 2/3 n
  • But 7/3 2/7 n ? 2/3 n
    eg n 1
  • 1/3 5/6 n
    5/18 n
  • But 2/3 5/6 n ? 5/9 n
    eg n 5
  • Is there a Normal Form ?

16
Properties of Chvátal Functions
  • They involve non-negative linear combinations
    (with possibly negative coefficients on the
    arguments) and nested integer round-up.
  • They obey the triangle inequality.
  • They are shift-periodic ie value is increased in
    cyclic pattern with increases in value of
    arguments.
  • They take the place of inequalities to define
    non-polyhedral integer monoids.

17
The Triangle Inequality
  • a b gt a b
  • Hence of value in defining Discrete Metrics

18
A Shift Periodic Chvátal Function of one argument
  • ½ ( x 3 x /9 ) is (9, 6) Shift
    Periodic. 2/3 is long-run marginal value
  • 14
  • 13
  • 12
  • 11
  • 10
  • 9
  • 8

19
Polyhedral and Non-Polyhedral Monoids
  • The integer lattice within the polytope -2x
    7y gt 0

  • x 3y gt 0
  • A Polyhedral Monoid
  • 4 . . . . . . . . . .
    . . . . .
  • 3 . . . . . . . . . .
    . . . . .
  • 2 . . . . . . . . . .
    . . . . .
  • 1 . . . . . . . . .
    . . . . . . .
  • 0 . . . . . . . . . .
    . . . . .
  • 0 1 2 3 4 5
    6 7 8 9 10 11 12
    13 14
  • Projection A Non-Polyhedral Monoid (Generators
    3 and 7)
  • x . . x . . x x . x
    x . x x x .
  • Defined by -x /3 2x /7 lt 0

20
Calculating the optimal Chvátal Function over a
Cone
  • Value Function over a Cone is a Chvátal
  • Function

21
IP Solution
  • 9 Optimal IP Solution (2 , 9) .
    Min x2
  • c3
    st 2x1 x2 gt 13
  • 8 . . c1 . .
    5x1 2x2 lt 30
  • Optimal LP Solution (2 2/3 , 7 2/3)

    -x1 x2 gt 5
  • 7 . . . . c2 .
    x1 , x2 gt 0
  • x2
  • 6 . . . .
    .
  • 5 . . . . .
  • 0 1 2 3 4
    x1


22
An Example
  • Minimise x2
  • subject to 2x1 x2 gt b1
  • -x1 x2 gt
    b3 x1, x2 integer
  • These are constraints which are binding at LP
    Optimum.
  • Convert 1st 2 rows to Hermite Normal Form by
    (integer) elementary column operations
  • 0 1 1 0
    x1 x1
    -1 1
  • 2 1 E -1 2 E-1
    where E 1
    0
  • -1 1 2 -1
    x2 x2

23
  • x1 gt 1/3( b1 2b3)
  • x2 gt 1/2(b1 1/3(b1 2b3) )
  • x1 gt 1/2(b3 1/2(b1 1/3(b1 2b3)
    ) )
  • 1/3( b1 2b3)
  • Unchanged. Hence optimal Chvátal Function

24
Calculating a Chvátal Functionover a Cone
  • ie we have sign pattern
  • xn xn-1 xn-2
    x1
  • Min
  • -
    b1
  • - -
    b2
  • .
    .
  • .
    gt .
  • .
    .
  • - -
    bn-1
  • -------------------------------
  • . . .
    bn

25
Calculating the optimal Chvátal Function over a
Cone
  • e
  • Take first estimate for xn (Optimal LP Chvátal
    Function)
  • Substitute to give new rhs for problem with
    variables xn-1,,, xn-2 ,, , x1
  • Repeat for xn-2 ,, , x1 ..
  • Repeat to give new estimate for xn ..
  • Continue until Chvátal Function unchanged between
    successive iterations

26
Calculating the optimal Chvátal Function
  • Minimise x2
  • subject to 2x1 x2 gt b1
  • -x1 x2 gt b3 (ie over
    cone) gives
  • x 1 1/2(b1 1/3(b1 2b3) ) - 1/3(b1
    2b3) x2 1/3(b1 2b3)
  • (NB values of variables not Chvátal Functions)
  • Substitute values for bi . If feasible for IP
    gives optimal Chvátal Function. Otherwise repeat
    procedure for IP
  • Minimise x2
  • subject to 2x1 x2 gt b1
  • 5x1 2x2
    lt b2
  • -x1
    x2 gt b3
  • x2 gt
    1/3(b1 2b3)
  • x1 , x2 gt 0
    and integer

27
References
  • CE Blair and RG Jeroslow, The value function of
    an integer programme, Mathematical Programming
    23(1982) 237-273.
  • V Chvátal, Edmonds polytopes and a hierarchy of
    combinatorial problems, Discrete Mathematics
    4(1973) 305-307.
  • D.Kirby and HP Williams, Representing integral
    monoids by inequalities Journal of Combinatorial
    Mathematics and Combinatorial Computing 23 (1997)
    87-95.
  • F Rhodes and HP Williams Discrete subadditive
    functions as Gomory functions, Mathematical
    Proceedings of the Cambridge Philosophical
    Society 117 (1995) 559-574.
  • HP Williams, Constructing the value function for
    an integer linear programme over a cone,
    Computational Optimisation and Applications 6
    (1996) 15-26.
  • HP Williams, Integer Programming and Pricing
    Revisited, Journal of Mathematics Applied in
    Business and Industry 8(1997) 203-214..
  • LA Wolsey, The b-hull of an integer programme,
    Discrete Applied Mathematics 3(1981) 193-201.
Write a Comment
User Comments (0)
About PowerShow.com