Title: The Chv
1The Chvátal Dual of a Pure Integer Programme
- H.P.Williams
- London School of Economics
2Duality in LP and IP
- The Value Function of an LP
- Minimise
x2 -
subject to 2x1 x2 gt b1 -
5x1 2x2 lt b2 -
-x1 x2 gt b3 -
x1 , x2 gt 0 - Value Function of LP is Max( 5b1 - 2b2 , 1/3(
b1 2b3) , b3) - If b1 13, b2 30, b3 5 we have Max( 5,
72/3 , 5 ) 72/3 - ,
- Consistency Tester is Max( 2b1 b2 , -b2 , -b2
2b3 ) lt 0 giving Max( -4, -30, -20) lt 0 . - (5, -2, 0), (1/3, 0, 2/3), (0, 0, 1) are
vertices of Dual Polytope .
3Duality in LP and IP
- The Value Function of an IP
-
Minimise x2 - subject to
2x1 x2 gt b1 -
5x1 2x2 lt b2 -
-x1 x2 gt
b3 -
x1 , x2
gt 0 and integer - Value Function of IP is
- Max( 5b1 - 2b2 ,1/3( b1 2b3) , b3 , b1
2 1/5 (-b2 2 1/3(b1 2b3) ) ) - This is known as a Gomory Function.
- The component expressions are known as Chv?tal
Functions . - Consistency Tester same as for LP (in this
example)
4IP Solution
- 9 Optimal IP Solution (2 , 9) .
Min x2 - c3
st 2x1 x2 gt 13 - 8 . . c1 . .
5x1 2x2 lt 30 - Optimal LP Solution (2 2/3 , 7 2/3)
-x1 x2 gt 5 - 7 . . . . c2 .
x1 , x2 gt 0 - x2
- 6 . . . .
. - 5 . . . . .
- 0 1 2 3 4
x1
5IP Solution after removing constraint 1
-
Min x2 -
- 8 c1 . . . c3
st 5x1 2x2 lt 30 -
-x1 x2 gt 5 - . . .
. x1 , x2 gt 0 - x2 7 . . .
-
- 6 . . . .
. c2 - Optimal IP Solution (0 , 5)
- 5
- 0 1 2 3
4 x1
6IP Solution
- 9 Optimal IP Solution (2 , 9) .
Min x2 - c3
st 2x1 x2 gt 13 - 8 . . c1 . .
5x1 2x2 lt 30 - Optimal LP Solution (2 2/3 , 7 2/3)
-x1 x2 gt 5 - 7 . . . . c2 .
x1 , x2 gt 0 - x2
- 6 . . . .
. - 5 . . . . .
- 0 1 2 3 4
x1
7IP Solution after removing constraint 2
- 9 . . .
Min x2 - c1 c3
st 2x1 x2 gt 13 - 8 . . . . Optimal IP
Solution (3, 8) -
-x1 x2 gt 5 - 7 . . . .
. x1 , x2 gt 0 - x2
- 6 . . . .
. - 5 . . . . .
x1 - 0 1 2 3 4
8IP Solution
- 9 Optimal IP Solution (2 , 9) .
Min x2 - c3
st 2x1 x2 gt 13 - 8 . . c1 . .
5x1 2x2 lt 30 - Optimal LP Solution (2 2/3 , 7 2/3)
-x1 x2 gt 5 - 7 . . . . c2 .
x1 , x2 gt 0 - x2
- 6 . . . .
. - 5 . . . . .
- 0 1 2 3 4
x1
9IP Solution after removing constraint 3
- 9 . . . .
Min x2 -
st 2x1 x2 gt 13 - 8 . . . . .
5x1 2x2 lt 30 - c1 c2
x1 ,
x2 gt 0 - 7 . . . .
. - x2
- 6 . . . .
. - 5 . . . .
.Optimal IP Solution (4 , 5) - 0 1 2 3 4
x1
10IP Solution
- 9 Optimal IP Solution (2 , 9) .
Min x2 - c3
st 2x1 x2 gt 13 - 8 . . c1 . .
5x1 2x2 lt 30 - Optimal LP Solution (2 2/3 , 7 2/3)
-x1 x2 gt 5 - 7 . . . . c2 .
x1 , x2 gt 0 - x2
- 6 . . . .
. - 5 . . . . .
x1 - 0 1 2 3 4
11Gomory and Chvátal Functions
- Max( 5b1-2b2, 1/3(b1 2b3), b3 , b1 2 1/5
(-b2 2 1/3(b1 2b3) ) ) - If b113, b230, b35 we have Max(5,8,5,9)9
- Chvátal Function b1 2 1/5 (-b2 2 1/3(b1
2b3) ) determines - the optimum.
- LP Relaxation is 19/15 b1 - 2/5 b2 8/15 b2
- (19/15, -2/5, 8/15) is an interior point of dual
polytope but - (5, -2, 0), (1/3, 0, 2/3) and (0,0,1) are
vertices corresponding to possible - LP optima (for different bi )
12Pricing by optimal Chvátal FunctionIntroduce new
variable X3
- Function
- ?b1 ?b31
- prices out X3
- Solution
- X1 22/3 , X2 72/3 , X3 0
- LP Case
- Minimise X2 1.5X3
- Subject to 2X1X2 X3 gt13
- 5X12X2X3lt30
- -X1X2 X3 gt5
- X1 , X2 gt 0
IP Case Minimise X2 1.5X3 Subject to 2X1X2 X3
gt13 5X12X2X3lt30
-X1X2 X3 gt5 X1 , X2
gt 0 and integer
Function b1 2 1/5 (-b2 2 1/3(b1 2b3))
3 does not price out X3 Solution X1 3,
X2 7, X3 1
13Why are valuations on discrete resources of
interest ?
- Allocation of Fixed Costs
- Maximise ?j pi xi - f y
- st xi - Di y lt 0
for all I - y e 0,1 depending on whether facility built.
- f is fixed cost.
- xi is level of service provided to i (up to level
Di ) - pi is unit profit to i.
- A dual value vi on xi - Di y lt 0 would
result in - Maximise ?j (pi vi ) xi - (f
(?i D i v i) y - Ie an allocation of the fixed cost back to the
consumers
14A Representation for Chvátal Functions
-
-
b1 b3
- b2 -
1
2 - Multiply and add
- on arcs
1 -
1
- Divide and round
- up on nodes
-
-
-
2
3
5
1
15Simplifications sometimes possible
- 2/7 7/3 n 2/3 n
- But 7/3 2/7 n ? 2/3 n
eg n 1 - 1/3 5/6 n
5/18 n - But 2/3 5/6 n ? 5/9 n
eg n 5 - Is there a Normal Form ?
16Properties of Chvátal Functions
- They involve non-negative linear combinations
(with possibly negative coefficients on the
arguments) and nested integer round-up. - They obey the triangle inequality.
- They are shift-periodic ie value is increased in
cyclic pattern with increases in value of
arguments. - They take the place of inequalities to define
non-polyhedral integer monoids. -
17The Triangle Inequality
- a b gt a b
- Hence of value in defining Discrete Metrics
18A Shift Periodic Chvátal Function of one argument
- ½ ( x 3 x /9 ) is (9, 6) Shift
Periodic. 2/3 is long-run marginal value - 14
- 13
- 12
- 11
- 10
- 9
- 8
19Polyhedral and Non-Polyhedral Monoids
- The integer lattice within the polytope -2x
7y gt 0 -
x 3y gt 0 - A Polyhedral Monoid
- 4 . . . . . . . . . .
. . . . . - 3 . . . . . . . . . .
. . . . . - 2 . . . . . . . . . .
. . . . . - 1 . . . . . . . . .
. . . . . . . - 0 . . . . . . . . . .
. . . . . - 0 1 2 3 4 5
6 7 8 9 10 11 12
13 14 - Projection A Non-Polyhedral Monoid (Generators
3 and 7) - x . . x . . x x . x
x . x x x . - Defined by -x /3 2x /7 lt 0
20Calculating the optimal Chvátal Function over a
Cone
- Value Function over a Cone is a Chvátal
- Function
21IP Solution
- 9 Optimal IP Solution (2 , 9) .
Min x2 - c3
st 2x1 x2 gt 13 - 8 . . c1 . .
5x1 2x2 lt 30 - Optimal LP Solution (2 2/3 , 7 2/3)
-x1 x2 gt 5 - 7 . . . . c2 .
x1 , x2 gt 0 - x2
- 6 . . . .
. - 5 . . . . .
- 0 1 2 3 4
x1
22An Example
- Minimise x2
- subject to 2x1 x2 gt b1
- -x1 x2 gt
b3 x1, x2 integer - These are constraints which are binding at LP
Optimum. - Convert 1st 2 rows to Hermite Normal Form by
(integer) elementary column operations - 0 1 1 0
x1 x1
-1 1 - 2 1 E -1 2 E-1
where E 1
0 - -1 1 2 -1
x2 x2
23- x1 gt 1/3( b1 2b3)
- x2 gt 1/2(b1 1/3(b1 2b3) )
-
- x1 gt 1/2(b3 1/2(b1 1/3(b1 2b3)
) ) - 1/3( b1 2b3)
- Unchanged. Hence optimal Chvátal Function
-
24Calculating a Chvátal Functionover a Cone
- ie we have sign pattern
- xn xn-1 xn-2
x1 - Min
- -
b1 - - -
b2 - .
. - .
gt . - .
. - - -
bn-1 - -------------------------------
- . . .
bn
25Calculating the optimal Chvátal Function over a
Cone
- e
- Take first estimate for xn (Optimal LP Chvátal
Function) - Substitute to give new rhs for problem with
variables xn-1,,, xn-2 ,, , x1 - Repeat for xn-2 ,, , x1 ..
- Repeat to give new estimate for xn ..
- Continue until Chvátal Function unchanged between
successive iterations -
26Calculating the optimal Chvátal Function
- Minimise x2
- subject to 2x1 x2 gt b1
- -x1 x2 gt b3 (ie over
cone) gives - x 1 1/2(b1 1/3(b1 2b3) ) - 1/3(b1
2b3) x2 1/3(b1 2b3) - (NB values of variables not Chvátal Functions)
- Substitute values for bi . If feasible for IP
gives optimal Chvátal Function. Otherwise repeat
procedure for IP - Minimise x2
- subject to 2x1 x2 gt b1
- 5x1 2x2
lt b2 - -x1
x2 gt b3 - x2 gt
1/3(b1 2b3) - x1 , x2 gt 0
and integer
27References
- CE Blair and RG Jeroslow, The value function of
an integer programme, Mathematical Programming
23(1982) 237-273. - V Chvátal, Edmonds polytopes and a hierarchy of
combinatorial problems, Discrete Mathematics
4(1973) 305-307. - D.Kirby and HP Williams, Representing integral
monoids by inequalities Journal of Combinatorial
Mathematics and Combinatorial Computing 23 (1997)
87-95. - F Rhodes and HP Williams Discrete subadditive
functions as Gomory functions, Mathematical
Proceedings of the Cambridge Philosophical
Society 117 (1995) 559-574. - HP Williams, Constructing the value function for
an integer linear programme over a cone,
Computational Optimisation and Applications 6
(1996) 15-26. - HP Williams, Integer Programming and Pricing
Revisited, Journal of Mathematics Applied in
Business and Industry 8(1997) 203-214.. - LA Wolsey, The b-hull of an integer programme,
Discrete Applied Mathematics 3(1981) 193-201.