Classical Cryptography - PowerPoint PPT Presentation

About This Presentation
Title:

Classical Cryptography

Description:

Classical Cryptography 1. Introduction: Some Simple Cryptosystems Outline [1] Introduction: Some Simple Cryptosystems The Shift Cipher The Substitution Cipher ... – PowerPoint PPT presentation

Number of Views:273
Avg rating:3.0/5.0
Slides: 29
Provided by: alg95
Category:

less

Transcript and Presenter's Notes

Title: Classical Cryptography


1
Classical Cryptography
  • 1. Introduction Some Simple Cryptosystems

2
Outline
  • 1 Introduction Some Simple Cryptosystems
  • lt1gt The Shift Cipher
  • lt2gt The Substitution Cipher
  • lt3gt The Affine Cipher
  • lt4gt The Vigenère Cipher
  • lt5gt The Hill Cipher
  • lt6gt The Permutation Cipher
  • lt7gt Stream Ciphers
  • 2 Cryptanalysis
  • lt1gt Cryptanalysis of the Affine Cipher
  • lt2gt Cryptanalysis of the Substitution Cipher
  • lt3gt Cryptanalysis of the Vigenère Cipher
  • lt4gt Cryptanalysis of the Hill Cipher
  • lt5gt Cryptanalysis of the LFSR Stream Cipher

3
Introduction Some Simple Cryptosystems
  • 1 Introduction

4
Introduction Some Simple Cryptosystems
  • Definition 1.1 A cryptosystem is a five-tuple
    (P,C,K,E,D) satisfies
  • P is a finite set of possible plaintexts
  • C is a finite set of possible ciphertexts
  • K, the keyspace, is a finite set of possible keys
  • For each K?K, there is an encryption rule eK?E
    and a corresponding decryption rule dK?D
  • dK(eK(x))x for every plaintext x?P

5
Introduction Some Simple Cryptosystems
  • Definition 1.2 a and b are integers,
  • m is a positive integer
  • congruence ab (mod m) if m divides b-a
  • Zm the set 0,1,,m-1
  • with 2 operations and ?
  • 10204 in Z26 (1020 mod 264)
  • 10?2018 in Z26 (10?20 mod 2618)

6
Introduction Some Simple Cryptosystems
  • lt1gt Shift Cipher
  • Cryptosystem 1.1 Shift Cipher
  • P C K Z26
  • K, x, y ?Z26
  • eK(x)(xK) mod 26
  • dK(y)(y-K) mod 26

A B C D E F G H I J K L M
0 1 2 3 4 5 6 7 8 9 10 11 12
N O P Q R S T U V W X Y Z
13 14 15 16 17 18 19 20 21 22 23 24 25
7
Introduction Some Simple Cryptosystems
  • eg. Suppose K11
  • Plaintext student
  • Ciphertext DEFOPZE

plaintext s t u d e n t
plaintext 18 19 20 3 4 13 19
K 3 4 5 14 15 25 4
ciphertext D E F O P Z E
8
Introduction Some Simple Cryptosystems
  • lt2gt Substitution Cipher
  • Cryptosystem 1.2 Substitution Cipher
  • PCZ26
  • K all possible permutations of the 26 symbols
  • For each p?K
  • ep(x)p(x)
  • dp(y)p-1(y)
  • where p-1 is the inverse permutation to p

9
Introduction Some Simple Cryptosystems
  • eg.
  • Plaintext student
  • Ciphertext VMUSHSM

x a b C d e f g h i j k l m
ep(x) X N Y A H P O G Z Q W B T
x n o p q r s t u v w x y z
ep(x) S F L R C V M U E K J D I
10
Introduction Some Simple Cryptosystems
  • lt3gt Affine Cipher
  • Theorem 1.1 axb (mod m) has a unique solution
    x?Zm for every b?Zm iff gcd(a,m)1
  • Definition 1.3 Suppose a1 and m2 are integers
  • a and m are relatively prime if gcd(a,m)1
  • f(m) the number of integers in Zm that are
    relatively prime to m
  • Theorem 1.2 Suppose

11
Introduction Some Simple Cryptosystems
  • Definition 1.4 Suppose a?Zm
  • a-1 mod m
  • the multiplicative inverse of a modulo m
  • aa-1a-1a1 (mod m)
  • Cryptosystem 1.3 Affine Cipher
  • P C Z26
  • K(a,b) ?Z26?Z26 gcd(a,26)1
  • For K(a,b)?K x, y?Z26
  • eK(x)(axb) mod 26
  • dK(y)a-1(y-b) mod 26

12
Introduction Some Simple Cryptosystems
  • e.g. Suppose K(7,3)
  • 7-1 mod 26 15
  • Plaintext student
  • Ciphertext ZGNYFQG

eK(x)(7x3) mod 26
dK(y)15(y-3) mod 26
plaintext s t u d e n t
plaintext 18 19 20 3 4 13 19
eK(x) 25 6 13 24 5 16 6
ciphertext Z G N Y F Q G
13
Introduction Some Simple Cryptosystems
  • lt4gt Vigenère Cipher
  • Cryptosystem 1.4 Vigenère Cipher
  • m a positive integer
  • P C K (Z26)m
  • For a key K(k1,k2,,km)
  • eK(x1,x2,,xm)(x1k1,x2k2,,xmkm)
  • dK(y1,y2,,ym)(y1-k1,y2-k2,,ym-km)

14
Introduction Some Simple Cryptosystems
  • e.g. Suppose m4 and K(2,8,15,7)
  • Plaintext student
  • Ciphertext UBJKGVI

plaintext s t u d e n t
plaintext 18 19 20 3 4 13 19
K 2 8 15 7 2 8 15
ciphertext 20 1 9 10 6 21 8
15
Introduction Some Simple Cryptosystems
  • lt5gt Hill Cipher
  • Definition 1.5 Suppose A(ai,j) is an m?m matrix
  • Ai,j the matrix obtained from A by deleting the
    ith row and the jth column
  • det A the determinant of A
  • m1 det Aa1,1
  • mgt1 for any fixed i
  • A(ai,j) the adjoint matrix of A
  • ai,j(-1)ijdet Aj,i

16
Introduction Some Simple Cryptosystems
  • Theorem 1.3 Suppose K(ki,j) is an m?m
    invertible matrix over Zn
  • K-1(det K)-1K
  • e.g.
  • det K11?7-8?3
    mod 261
  • K-1(det K)-1K

17
Introduction Some Simple Cryptosystems
  • Cryptosystem 1.5 Hill Cipher
  • M 2 is an integer
  • P C (Z26)m
  • K m?m invertible matrices over Z26
  • For a key K
  • eK(x)xK
  • dK(y)yK-1
  • where K-1 is the inverse of K

18
Introduction Some Simple Cryptosystems
  • e.g.
  • Plaintext GOD (6 14 3)
  • Ciphertext WTJ (22 19 9)

19
Introduction Some Simple Cryptosystems
  • lt6gt Permutation Cipher
  • Cryptosystem 1.6 Permutation Cipher
  • m is a positive integer
  • P C (Z26)m
  • K consist of all permutations of 1,,m
  • For a key(a permutation) p
  • ep(x1,,xm)(xp(1),,xp(m))
  • where p-1 is the inverse permutation to p

20
Introduction Some Simple Cryptosystems
  • e.g. Suppose m6
  • Plaintext CYBERFORMULA
  • Ciphertext BRCFEYMLOAUR

x 1 2 3 4 5 6
p(x) 3 5 1 6 4 2
plaintext C Y B E R F O R M U L A
ciphertext B R C F E Y M L O A U R
21
Introduction Some Simple Cryptosystems
  • lt7gt Stream Ciphers
  • Block ciphers
  • Plaintext string x x1x2 (each xi is a
    plaintext)
  • Ciphertext string y y1y2 eK(x1)eK(x2)
  • Stream ciphers
  • Plaintext string x x1x2
  • Generate a keystream (by using some K) z z1z2
  • Ciphertext string y y1y2 ez1(x1)ez2(x2)

22
Introduction Some Simple Cryptosystems
  • Definition 1.6 A synchronous stream cipher is a
    tuple (P,C,K,L,E,D) with a function g
  • P a finite set of possible plaintexts
  • C a finite set of possible ciphertexts
  • K a finite set of possible keys
  • L a finite set called the keystream alphabet
  • g the keystream generator
  • Input K
  • g generates an infinite string z1z2

23
Introduction Some Simple Cryptosystems
  • Definition 1.6 (cont.)
  • For each z?L, there is an encryption rule ez?E
    and a corresponding decryption rule dZ?D
  • dz(ez(x))x for every plaintext x?P

24
Introduction Some Simple Cryptosystems
  • Vigenère Cipher can be defined as a synchronous
    stream cipher
  • K (Z26)m
  • P C L Z26
  • ez(x)(xz) mod 26
  • dz(y)(y-z) mod 26
  • Keystream z1z2
  • k1k2..km k1k2..km k1k2..km

25
Introduction Some Simple Cryptosystems
  • Keystream can be produced efficiently in hardware
    using a LFSR (Linear Feedback Shift Register)
  • k1 would be tapped as the next keystream bet
  • k2,km would each be shifted 1 stage to the left
  • The new value of km would be
  • this is linear feedback (see Figure 1.2)
  • This system is modulo 2

26
Introduction Some Simple Cryptosystems
  • e.g. in Figure 1.2,suppose K(1,0,0,0)
  • c01, c11, c20, c30
  • The keystream is
  • 100010011010111

Figure 1.2
27
Introduction Some Simple Cryptosystems
  • Non-synchronous stream cipher
  • Each keystream element zi depends on previous
    plaintext or ciphertext elements
  • Cryptosystem 1.7 Autokey Cipher
  • P C K L Z26
  • z1K, zixi-1 for all igt1
  • For x, y, z ?Z26
  • ez(x)(xz) mod 26
  • dz(y)(y-z) mod 26

28
Introduction Some Simple Cryptosystems
  • e.g. Suppose K8
  • Plaintext student
  • Ciphertext ALNXHRG

plaintext s t u d e n t
plaintext 18 19 20 3 4 13 19
keystream 8 18 19 20 3 4 13
ciphertext 0 11 13 23 7 17 6
ciphertext A L N X H R G
Write a Comment
User Comments (0)
About PowerShow.com