Title: How%20Does%20the%20Sample%20Affect%20the%20Measurement%20of%20Different%20Carbon%20Fractions?
1How Does the Sample Affect the Measurement of
Different Carbon Fractions?
- Judith C. Chow Desert Research InstituteReno,
NVpresented at the - International Workshop for the Development of
Research Strategies for the Sampling and Analysis
of Organic and Elemental Carbon Fractions in
Atmospheric Aerosols - Durango, Colorado
- March 4, 2003
2Types of Sample Effects
- Filter samples
- Carbon particle composition
- Chemical and physical interactions between carbon
and other constituents
3Filter Sample Biases
- Non-uniform filter deposit biases scaling from
punch to whole filter - Non-uniform filter punch deposit biases optical
monitoring and charring - Too light or too dark particle deposits make
pyrolysis correction uncertain - More heavily loaded samples require longer
combustion time at each temperature step - Organic vapor adsorption and volatilization in
filter biases OC and pyrolysis correction
4Non-Uniform Sample Deposits(Chow, 1995)
5Carbon Particle Composition
- Ambient mixtures, source mixtures, and pure
carbon substances do not respond to heating in
the same way - Thermal evolution protocols are poorly documented
and characterized - Thermal evolution temperatures are not optimized
to bracket compositions - Carbonates are not present in most ambient PM2.5
samples, and CaCO3 evolves at gt800 C if they are
present - Samples do not respond the same as calibration
standards
6At Least 15 International Thermal Combustion
Carbon Methods
- Oregon Graduate Institute thermal optical
reflectance (TOR) (Huntzicker et al., 1982) - IMPROVE TOR and thermal optical transmittance
(TOT) (Chow et al., 1993, 2001) - NIOSH TOT (NIOSH, 1999)
- ACE-Asia TOT (Mader et al., 2001)
- Hong Kong University of Science and Technology
UST-3 TOT (Yang and Yu, 2002)
7At Least 15 International Thermal Combustion
Carbon Methods (continued)
- Meteorological Service of Canada MSC1 TOT (Sharma
et al., 2002) - U.S. Speciation Trends Network (STN) TOT
- General Motors Research Laboratory two
temperature (Cadle et al., 1980) - Brookhaven National Laboratory two temperature
(Tanner et al., 1982) - Japanese two temperature (Mizohata and Ito,
1985)
8At Least 15 International Thermal Combustion
Carbon Methods (continued)
- Two-temperature thermal manganese
oxidation (Fung, 1990) - RP two temperature (Rupprecht et al., 1995)
- French two-temperature pure oxygen
combustion (Cachier, 1989a, 1989b) - Lawrence Berkeley Laboratory continuous
temperature ramp (Novakov, 1982) - German VDI extraction/combustion (Verein
Deutcher Ingenieure, 1999)
9Differences among Operating Parameters
- Combustion atmospheres
- Temperature ramping rates
- Temperature plateaus
- Residence time at each plateau
- Optical monitoring configuration and wavelength
- Standardization
- Sample aliquot and size
- Oxidation (C to CO2) catalyst
- Evolved carbon detection method
- Carrier gas flow through or across the sample
- Location of the temperature monitor relative to
the sample
10Laboratory intercomparisons are not consistent
(Schmid et al., 2001)
11Same method intercomparisons show differences
(Schauer et al., 2003)
12Comparison of EC Concentrations between TMO and
TOR Methods(Fung et al., 2002)
13IMPROVEcarbon thermogram
Sample from Hong Kong urban site on 04/17/01 with
9.9 0.8 ug/m3 OCand 7.8 0.8 ug/m3 EC
STNcarbon thermogram
14Carbon Source Profiles(Watson et al., 1994)
Diesel-fueled vehicles
Gasoline-fueled vehicles
15Hong Kong Vehicle Exhaust Profiles (Cao et al.,
2003)
Source Differences in Carbon Fractions
16BRAVO Source Profiles (Chow et al., 2003)
Source Differences in Carbon Fractions
17No relationship between EC and carbonate by
acidification(Chow and Watson, 2002)
IMPROVE samples and IMPROVE protocol
18Carbon Standards Should be Similar to Samples
- Water-soluble organics (e.g., sucrose, KHP,
organic acids) - Carbon dioxide and methane
- Nebulized charcoal resuspension
- Carbon blacks
- Graphite powders
- Organic dyes (e.g., nigrosin, C48N9H51)
- Carbon arc emissions
- Simulated source emissions
- Neutral density filters
19Some Organic Compounds Absorb Light(Justus et
al., 1993)
Transmission through nigrosin (C48N9H51) dye
20Chemical Composition of Carbon Black and Fresh
Soot(Watson and Valberg, 2001)
21Chemical and Physical Interactions of Carbon with
Other Constituents
- Oxidation interactions
- Catalytic reactions
- Optical interactions
22Increasing rate of graphite oxidation by MnO2
(Fung, 1990)
1000K
900K
833K
800K
23Catalytic reactions with glass-fiber filter (525
C)(Lin and Friedlander, 1988a, 1988b, 1988c)
Na, K, Pb, Mn, Fe, Ca, V, Cu, Ni, Co, and Cr
compounds are known catalysts
24Carbon Fractions are Probably Different for
Different Applications
- Visibility and radiation balance
- Visible light absorption and scattering by
particles in the atmosphere - Source attribution
- Consistently define fractions in source and
receptor samples - Health effects
- Absorption of toxic substances on EC
- Chemical and physical models
- Reaction surfaces, catalytic properties
25Research Needs
- Critically summarize and review non-atmospheric
carbon literature - Document methods (combustion temperatures,
ramping rates, residence times, optical pyrolysis
corrections) - Prepare different standards representing
different black carbon sources - Perform optical modeling to verify changes in
absorption and scattering properties
26Research Needs (continued)
- Optimize carbon fractions for source
identification - Quantify effects of pyrolysis on and within a
filter to resolve reflectance/transmittance
differences - Quantify effects of non-absorbing particles,
optical monitoring wavelengths, initial darkness,
carbonate deposits, and oxygen-supplying minerals - Calibrate reflectance and transmittance
measurements and report with carbon fractions at
beginning, minimum, oxygen introduction, and end
of analysis
27References
- Cachier, H. Bremond, M.P. and Buat-Ménard, P.
(1989a). Thermal separation of soot carbon.
Aerosol Sci. Technol., 10(2)358-364. - Cachier, H. Bremond, M.P. and Buat-Ménard, P.
(1989b). Determination of atmospheric soot
carbon with a simple thermal method. Tellus,
41B(3)379-390. - Cadle, S.H. Groblicki, P.J. and Stroup, D.P.
(1980). An automated carbon analyzer for
particulate samples. Anal. Chem.,
52(13)2201-2206. - Cao, J.J. Ho, K.F. Lee, S.C. Fung, K. Zhang,
X.Y. Chow, J.C. and Watson, J.G. (2003).
Characterization of roadside fine particulate
carbon and its 8 fractions in Hong Kong. Sci.
Total Environ., submitted. - Chow, J.C. Watson, J.G. Pritchett, L.C.
Pierson, W.R. Frazier, C.A. and Purcell, R.G.
(1993). The DRI Thermal/Optical Reflectance
carbon analysis system Description, evaluation
and applications in U.S. air quality studies.
Atmos. Environ., 27A(8)1185-1201.
28References (continued)
- Chow,J.C. (1995). Summary of the 1995 AWMA
critical review Measurement methods to
determine compliance with ambient air quality
standards for suspended particles. EM 1,
12-15. - Chow, J.C. Watson, J.G. Crow, D. Lowenthal,
D.H. and Merrifield, T. (2001). Comparison of
IMPROVE and NIOSH carbon measurements. Aerosol
Sci. Technol., 34(1)23-34. - Chow, J.C. and Watson, J.G. (2002). PM2.5
carbonate concentrations at regionally
representative Interagency Monitoring of
Protected Visual Environment sites. J. Geophys.
Res., 107(D21)ICC 6-1-ICC 6-9. doi
10.1029/2001JD000574. - Chow, J.C. Watson, J.G. Kuhns, H.D.
Etyemezian, V. Lowenthal, D.H. Crow, D.J.
Kohl, S.D. Engelbrecht, J.P. and Green, M.C.
(2003). Source profiles for industrial, mobile,
and area sources in the Big Bend Regional Aerosol
Visibility and Observational (BRAVO) Study.
Chemosphere, submitted. - Fung, K.K. (1990). Particulate carbon speciation
by MnO2 oxidation. Aerosol Sci. Technol.,
12(1)122-127. - Fung, K.K. Chow, J.C. and Watson, J.G. (2002).
Evaluation of OC/EC speciation by thermal
manganese dioxide oxidation and the IMPROVE
method. J. Air Waste Manage. Assoc.,
52(11)1333-1341.
29References (continued)
- Huntzicker, J.J. Johnson, R.L. Shah, J.J. and
Cary, R.A. (1982). Analysis of organic and
elemental carbon in ambient aerosols by a
thermal-optical method. In Particulate Carbon
Atmospheric Life Cycle, G.T. Wolff and R.L.
Klimisch, Eds. Plenum Press, New York, NY, pp.
79-88. - Justus, B.L. Huston, A.L. and Campillo, A.J.
(1993). Broadband thermal optical limiter.
Appl. Phys. Lett., 63(11)1483-1485. - Lin, C. and Friedlander, S.K. (1988a). Soot
oxidation in fibrous filters. 1. Deposit
structure and reaction mechanisms. Langmuir,
4(4)891-898. - Lin, C. and Friedlander, S.K. (1988b). Soot
oxidation in fibrous filters. 2. Effects of
temperature, oxygen partial pressure, and sodium
additives. Langmuir, 4(4)898-903. - Lin, C.I. and Friedlander, S.K. (1988c). A note
on the use of glass fiber filters in the thermal
analysis of carbon containing aerosols. Atmos.
Environ., 22(3)605-607.
30References (continued)
- Mader, B.T. Flagan, R.C. and Seinfield, J.H.
(2001). Sampling atmospheric carbonaceous
aerosols using a particle trap impactor/denuder
sampler. Environ. Sci. Technol., 35(24),
4857-4867. - Mizohata, A. and Ito, N. (1985). Analysis of
organic and elemental carbon in atmospheric
aerosols by thermal method. Annual Report of the
Radiation Center of Osaka Prefecture,
26(0)51-55. - NIOSH (1999). Method 5040 Issue 3 (Interim)
Elemental carbon (diesel exhaust). In NIOSH
Manual of Analytical Methods, 4th ed. National
Institute of Occupational Safety and Health,
Cincinnati, OH. - Novakov, T. (1982). Soot in the atmosphere. In
Particulate Carbon Atmospheric Life Cycle, G.T.
Wolff and R.L. Klimisch, Eds. Plenum Press, New
York, NY, pp. 19-41.
31References (continued)
- Rupprecht, E.G. Patashnick, H. Beeson, D.E.
Green, R.E. and Meyer, M.B. (1995). A new
automated monitor for the measurement of
particulate carbon in the atmosphere. In
Proceedings, Particulate Matter Health and
Regulatory Issues, J.A. Cooper and L.D. Grant,
Eds. Air and Waste Management Association,
Pittsburgh, PA, pp. 262-267. - Schmid, H.P. Laskus, L. Abraham, H.J.
Baltensperger, U. Lavanchy, V.M.H. Bizjak, M.
Burba, P. Cachier, H. Crow, D.J. Chow, J.C.
Gnauk, T. Even, A. ten Brink, H.M. Giesen,
K.P. Hitzenberger, R. Hueglin, C. Maenhaut,
W. Pio, C.A. Puttock, J. Putaud, J.P.
Toom-Sauntry, D. and Puxbaum, H. (2001).
Results of the "Carbon Conference" international
aerosol carbon round robin test Stage 1.
Atmos. Environ., 35(12)2111-2121. - Sharma, S. Brook, J. Cachier, H. Chow, J.C.
Gaudenzi, A. and Lu, G. (2002). Light
absorption and thermal measurements of black
carbon in different regions of Canada. J.
Geophys. Res., 107(D24)AAC 11-1-AAC 11-11.
doi10.1029/2002JD002496.
32References (continued)
- Tanner, R.L. Gaffney, J.S. and Phillips, M.F.
(1982). Determination of organic and elemental
carbon in atmospheric aerosol samples by thermal
evolution. Anal. Chem., 54(9)1627-1630. - Verein Deutcher Ingenieure (1999). Method 2465
Part 2 Measurement of soot (ambient
air)-Thermographic determination of elemental
carbon after thermal desorption of organic
carbon. Prepared by Verein Deutcher Ingenieure,
Beuth, Berlin, FRG. - Watson, A.Y. and Valberg, P.A. (2001). Carbon
black and soot Two different substances. Am.
Industrial Hygiene Assoc. J., 62(Mar/Apr)218-228.
- Watson, J.G. Chow, J.C. Lowenthal, D.H.
Pritchett, L.C. Frazier, C.A. Neuroth, G.R.
and Robbins, R. (1994). Differences in the
carbon composition of source profiles for diesel-
and gasoline-powered vehicles. Atmos. Environ.,
28(15)2493-2505. - Yang, H. and Yu, J.Z. (2002). Uncertainties in
charring correction in the analysis of elemental
and organic carbon in atmospheric particles by
thermal/optical methods. Environ. Sci. Technol.,
36(23)5199-5204.