Graph preprocessing - PowerPoint PPT Presentation

1 / 15
About This Presentation
Title:

Graph preprocessing

Description:

Graph preprocessing Introduction Introduction Introduction Protein Function and Interaction Data Problems with Available Interaction Data (I) Noise: Spurious or false ... – PowerPoint PPT presentation

Number of Views:119
Avg rating:3.0/5.0
Slides: 16
Provided by: admin1424
Category:

less

Transcript and Presenter's Notes

Title: Graph preprocessing


1
Graph preprocessing
2
Introduction
3
Introduction
4
Introduction
5
Protein Function and Interaction Data
6
Problems with Available Interaction Data (I)
  • Noise Spurious or false positive interactions
  • Leads to significant fall in performance of
    protein function prediction algorithms Deng et
    al, 2003



Hart et al,2006
7
Problems with Available Interaction Data (II)
  • Incompleteness Unavailability of a major
    fraction of interactomes of major organisms
  • Yeast 50, Human 11
  • May delay the discovery of important knowledge


Hart et al, 2006
8
Introduction
9
Introduction
10
Data cleaning techniques at data collection stage
11
Purpose of data cleaning techniques data analysis
view point
12
Purpose of data cleaning techniques data analysis
view point
13
Data cleaning techniques at the data analysis
stage
14
Neighbourhood-based approaches for graph
transformation
15
References (I)
  • Pandey et al, 2006 Gaurav Pandey, Vipin Kumar
    and Michael Steinbach, Computational Approaches
    for Protein Function Prediction A Survey, TR
    06-028, Department of Computer Science and
    Engineering, University of Minnesota, Twin Cities
  • Pandey et al, 2007 G. Pandey, M. Steinbach, R.
    Gupta, T. Garg and V. Kumar, Association
    analysis-based transformations for protein
    interaction networks a function prediction case
    study. KDD 2007 540-549
  • Xiong et al, 2005 XIONG, H., HE, X., DING, C.,
    ZHANG, Y., KUMAR, V., AND HOLBROOK, S. R. 2005.
    Identification of functional modules in protein
    complexes via hyperclique pattern discovery. In
    Proc. Pacific Symposium on Biocomputing (PSB).
    221232.
  • Xiong et al, 2006a XIONG, H., TAN, P.-N., AND
    KUMAR, V. 2003. Hyperclique Pattern Discovery,
    Data Mining and Knowledge Discovery,
    13(2)219-242
  • Xiong et al, 2006b XIONG, H., PANDEY, G.,
    STEINBACH, M., AND KUMAR, V. 2006, Enhancing Data
    Analysis with Noise Removal, IEEE TKDE,
    18(3)304-319
  • Xiong et al, 2006c Hui Xiong, Michael
    Steinbach, and Vipin Kumar, Privacy Leakage in
    Multi-relational Databases A Semi-supervised
    Learning Perspective, VLDB Journal Special Issue
    on Privacy Preserving Data Management , Vol. 15,
    No. 4, pp. 388-402, November, 2006
  • Xiong et al, 2004 Hui Xiong, Michael Steinbach,
    Pang-Ning Tan and Vipin Kumar, HICAP
    Hierarchical Clustering with Pattern
    Preservation, SIAM Data Mining 2004
  • Tan et al, 2005 TAN, P.-N., STEINBACH, M., AND
    KUMAR, V. 2005. Introduction to Data Mining.
    Addison-Wesley.
  • Nabieva et al, 2005 NABIEVA, E., JIM, K.,
    AGARWAL, A., CHAZELLE, B., AND SINGH, M. 2005.
    Whole-proteome prediction of protein function via
    graph-theoretic analysis of interaction maps.
    Bioinformatics 21, Suppl. 1, i1i9.
  • Deng et al, 2003 DENG, M., SUN, F., AND CHEN,
    T. 2003. Assessment of the reliability of
    proteinprotein interactions and protein function
    prediction. In Pac Symp Biocomputing. 140151.
  • Gavin et al, 2002 A. Gavin et al. Functional
    organization of the yeast proteome by systematic
    analysis of protein complexes, Nature, 
    415141-147, 2002
  • Hart et al, 2006 G Traver Hart, Arun K Ramani
    and Edward M Marcotte, How complete are current
    yeast and human protein-interaction networks,
    Genome Biology, 7120, 2006
Write a Comment
User Comments (0)
About PowerShow.com