dynamic spectrum - PowerPoint PPT Presentation

About This Presentation
Title:

dynamic spectrum

Description:

dynamic spectrum Operations/systems. Processes so far considered: Y(t), 0 – PowerPoint PPT presentation

Number of Views:78
Avg rating:3.0/5.0
Slides: 26
Provided by: David1431
Category:

less

Transcript and Presenter's Notes

Title: dynamic spectrum


1
dynamic spectrum
2
Operations/systems.
Processes so far considered Y(t), 0lttltT
time series using Dirac
deltas includes point process Y(x,y),
0ltxltX, 0ltyltY image includes
spatial point process Y(x,y,t), 0ltxltX,
0ltyltY, 0lttltT spatial-temporal
includes trajectory and more
3
Manipulating process data All functions, so can
expect things computed and parameters to be
functions also Operations that are common in
nature Differential equations - Newton's
Laws Systems - input and (unique) output
box and arrow diagrams
4
Operations. carry one function/process into
another
Domain D X(t), t in Rp or Zp Map A.
notice Range Y(.) AX(.), X in D
X, Y may be vector-valued Examples. running
mean X(t-1)X(t)X(t1)/3 running median
Y(x,y) medianX(u,v), u x,x?1, vy?1
gradient Y(x,y) ? X(x,y) level crossings
Y(t) X'(t)?(X(t)-a) t.s. gt p.p.
5
Time invariance.
t in Z or R translation operator Tu X(.)
X(.u) Tu X(t) X(tu), for all t operator
A is time invariant if ATu X(t)
AX(tu), for all t,u Examples. previous
slide Non example. Y(t) sup0ltsltt X(s)
6
Operator A. is linear if Aa1X1 a2X2
a1AX1 a2AX2 a's in R, X's in
D a, X can be complex-valued complex numbers
zu iv, i sqrt(-1) z sqrt(u2 v2) ,
arg ztan-1 (Re(z),Im(z)) De Moivre expix
cos x i sin x
7
Linear time invariant A.. filter
Lemma. If e(t)expi?t, t in Z in DA, then
there is A(?) with Ae(t)
expi?tA(?) A(.) transfer function notice (
) arg(A(.)) phase A(.)
amplitude Example If Y(t) AX(t) ?u
a(u)X(t-u), u in Z A(?) ?u a(u)
exp-i?t FT u lag AX
convolution
8
Proof.
e?(t) exp(i?t) Ae(tu) AT e(t)
definition Aexpi?ue(t) de
finition expi?uAe(t) linear
Ae(u) expi?uAe(0) set t 0 A(?)
Ae?(0)
9
Properties of transfer function.
A(?2?) A(?), expi2?1 fundamental domain
for ? 0,?
10
Vector case. a is s by r Y(t) ?
a(u)X(t-u) A(?) ? a(u)
exp-i?u Continuous. Y(t) ? a(u)X(t-u)du
A(?) ? a(u) exp-i?u
du Spatial. Y(x,y) ? a(u,v)X(x-u,y-v)
A(?,?)?u,v a(u,v) exp-i(?u?v) Point
process. Y(t) ? a(u)dN(t-u) ? a(t-?j )
A(?) ? a(u) exp-i?udu
11
Algebra (of manipulating linear time invariant
operators).
Linear combination AX BX A(?)
B(?) ? a(t) b(t) successive
application BAX B(?)A(?) ?
b?a(t) inverse A-1X B(?) A(?)-1
12
Impulse response. Dirac delta ?(u), u in R
Kronecker delta ?u 1 if u0, 0
otherwise A?(t) a(t) impulse
response a(u) 0, tlt0 realizable
13
Examples.
Running mean of order 2M1. Y(t) ? M-M
X(tu)/(2M1)
Difference Y(t) X(t) - X(t-1) A(?)
2i sin(?/2) exp-i?/2 A(?)
14
Bandpass A(?) Lowpass A(?) Smoothers
15
(No Transcript)
16
(No Transcript)
17
Nonlinear.
Quadratic instantaneous. Y(t) X(t)2
X(t) cos ?t Y(t) (1 cos 2?t)/2
Yariv "Quantum Electronics"
18
(No Transcript)
19
Quadratic, time lags (Volterra) Y(t) ?
a(u)X(t-u) ?u,v b(u,v) X(t-u)
X(t-v) quadratic transfer function B(?,?)
?u,v b(u,v) exp-i(?ui?v)
20
Transforms.
Fourier. dT(?) ?t Y(t) exp-i?t ?
real ? Y(t) exp-i?tdt Laplace.
LT(p) ?t?0 Y(t) exp-pt p complex
? Y(t) exp-ptdt z. ZT(z)
?t?0 Y(t)zt z complex
21
Hilbert. Y(t) ?u a(u) X(t-u)
a(u) 2/?u, u odd 0, u even
?u ?tX(u)/(t-u)du cos ?t gt sin
?t Radon. Y(x,y) R(?,?) ?
Y(x,??x)dx Short-time/running Fourier.
Y(t) ? w(t-u) exp-i?u)X(u)du Gabor
w(u) exp-ru2
22
Wavelet. eg. w(t) w0(t) exp-i?t Walsh.
??? (t) Y(t) dt ?n(t) Walsh function
?s(t) ?s(t)?t(s) Chirplet. C(?,?)
? Y(t)exp-i(??t)tdt
23
Use of A(?,?).
Suppose X(x,y) ? ?j,k ?jk expi(?j x ?k
y) Y(x,y) AX(x,y) ? ?j,k
A(?j,?k) ?jk expi(?j x ?k y) e.g. If A(?,?)
1, ? ?0, ??0 ? ?
0 otherwise Y(x,y) contains only
these terms Repeated xeroxing
24
Chapters 2,3 in D. R. Brillinger "Time Series
Data Analysis and Theory". SIAM paperback
25
(No Transcript)
Write a Comment
User Comments (0)
About PowerShow.com