Title: Thermodynamic Properties of the Shastry Sutherland Model
1Thermodynamic Properties of the Shastry
Sutherland Model
Janez Bonca Physics Department, FMF, University
of Ljubljana, J. Stefan Institute, Ljubljana,
SLOVENIA
2- Collaborators
- S. El Shawish and I. Sega, J. Stefan Inst.,
Ljubljana, Slovenia - C. D. Batista, M. Jaime, N. Harrison, G.A. Jorge,
LANL T-11, NHMFL, USA - R. Stern, NICPB, Tallin, Estonia
- H.A. Dabkowska, B.D. Gaulin, Mc Master Univ.,
Hamilton, Canada
3Introduction
- Structure and symmetry properties of SrCu2(BO3)2
- The Sutherlad Shastry model
- Finite Temperature Lanczos method
- Specific heath results and comparison with
experiment - Spin structure factor at zero and finite
temperatures and comparison with ESR and INS
measurements - Finite doping with nonmagnetic impurities
4SrCu2(BO3)2
5SrCu2(BO3)2
6Space group of the CuBO3 plane
Point group
Including time-reversal at H0
Hgt0
7Shastry-Sutherland model
Shastry Sutherland Physica 108B (1981) 1069
8Complete model
Tslt395K
9Symmetry of DM term
sx
y
1
Inversion Symmetry
sy
x
2
Mirror Symmetry
10Computation
Allowed tilted square lattices
11FTLM High -T expansion
- Thermal average over the canonical ensemble
Combination of high- temperature expansion and
random sampling
J. Jaklic and P. Prelovšek, Adv. Phys. 49, 1
(2000). J. Jaklic and P. Prelovšek, Phys. Rev.
Lett. 77, 892 (1996). J. Bonca and P. Prelovšek,
Phys. Rev. B 67, 085103 (2002).
12FTLM High -T expansion
- Thermal average in the canonical ensemble
Only Nst5000 can be done exactly
Instead, we perform High-T expansion of Exp(-? H)
13FTLM High T expansion cont
M - of Lanczos steps Mgtk
- The error is of the order of ?M1
- Expansion remains exact at T-gt0
14Random sampling
15Implementation of HTML
We join HTE and random sampling
A special case H,A0 ?
16Finite-size effects, Tfs
17Thermodyamic properties
Entropy density
Specific heat
Uniform susceptibility
18Model parameters
19Uniform Susceptibility
T(K)
20Specific heat
G.A.Jorge, R.Stern, M. Jaime, N. Harrison, J.
Bonca, S. El Shawish, C.D Batista, H.A.
Dabkowska, and B.D. Gaulin,PRB 71, 092403, (2005).
21Energy spectrum
3
4
2
1
22ESR spectrum
H. Nojiri, et al.,J. Phys. Soc. Jpn. 72, 3243
(2003).
23Spin Structure Factor S. El Shwaish, J. Bonca,
C.D.Batista, and I. Sega, PRB 71, 014413 (2005)
Non-symmetry breaking D
24Symmetry breaking D
T0
25Effect of Dx and Dy terms
26Finite T calculations
T0
27Finite T calculations
28H. Nojiri, et al.,J. Phys. Soc. Jpn. 72, 3243
(2003).
Bc
Ba
29Neutron Scattering
Knetter, PRL 92, 027204 (2004)
30Neutron Scattering
S. El Shawish, J. Bonca, and I. Sega, PRB
72,184409 (2005).
Comparison of FTLM with Kageyama et al. PRL,
84 5876 (2000).
31Neutron Scattering
Comparison of FTLM with B.D. Gaulin et al.
PRL, 93 267202 (2004).
S. El Shawish, J. Bonca, and I. Sega, PRB
72,184409 (2005).
32Neutron Scattering
FTLM results
Comparison of FTLM with B.D. Gaulin et al.
PRL, 93 267202 (2004).
Experiment
T1.4K
33Dimer model J0,JD34K
34Neutron Scattering
S. El Shawish, J. Bonca, and I. Sega, PRB
72,184409 (2005).
Comparison of FTLM with B.D. Gaulin et al.
PRL, 93 267202 (2004).
35Finite Doping Sr Cu2-xMx(BO3)2, MZn,Mg
J/J0.62
N32, Nh1
Leung Cheng,PRB 69, 180403, (2005)
36Uniform susceptibility co
K.Kudo et al. cond-mat/0409178
37Spin Structure Factor Sr Cu2-xMx(BO3)2,
X2n
38Conclusions
- FT simulations of Cv show good agreement with
experimental data when symmetry breaking DM term
is of the order of Dz5K. G.A.Jorge, R.Stern, M.
Jaime, N. Harrison, J. Bonca, S. El Shawish, C.D
Batista, H.A. Dabkowska, and B.D. Gaulin,PRB 71,
092403, (2005). - ESR spectra can be reproduced only with finite
value of symmetry breaking Dz open question
(structural phase transition, phonons). S. El
Shwaish, J. Bonca, C.D.Batista, and I. Sega, PRB
71, 014413 (2005). - Good agreement with neutron-scattering data. S.
El Shawish, J. Bonca, and I. Sega, PRB 72,184409
(2005). - Results a finite doping show filling up of the
spin gap.