Title: BT
1BTÖ 212 Ögretim TasarimiÇokluortam Tasarim
Ilkeleri
2Tanimlar
- Çokluortam (Multimedia) Sözcük (yazili ya da
sözlü olarak) ve resimlerin (sema, fotograf,
animasyon, video) sunumu - Çokluortam Ögrenme Sözcük ve resimlerden
zihinsel temsiller olusturma - Çokluortam Ögretim Ögrenmeyi saglamak amaciyla
sözcük ve resimlerin kullanilmasi
3Temel Fikir
- Çokluortam mesajlar, insan zihninin nasil
çalistigi göz önünde bulundurularak ve
arastirma-tabanli ilkeler dikkate alinarak
tasarlandiginda ögrenmeyi artirir.
4Kuramsal Temeller
5Çokluortam Ögrenme ile ilgili Bilissel Kuram
Uzun Süreli Bellek
Çokluortam Sunum
Duyussal Bellek
Çalisan Bellek
Sözel Model
Sözcükler
Kulaklar
Sesler
Önbilgi
Resimsel Model
Resimler
Gözler
Simgeler
Seçme
Düzenleme
Bütünlestirme
6Deneyebiliriniz!
- Kisa süreli belleginizin kapasitesi ne kadar?
- http//gocognitive.net/sites/default/files/stm.v1.
0.a_1_0.swf - http//cognitivefun.net/test/4
7 8 9 10 11 12 13- Çokluortam Tasarim Ilkeleri
- (Mayer, 2001, 2009)
141. Çokluortam Ilkesi
- Ögrenciler sadece sözcükler yerine sözcük ve
resimlerden daha iyi ögrenirler. - Sözcükler Resimler ??
152. Uzamsal Süreklilik Ilkesi
- Birbiriyle iliskili sözcük ve resimler ekran ya
da sayfa üzerinde birbirine yakin sunulursa
ögrenciler daha iyi ögrenirler.
16(No Transcript)
17When the surface of the earth is warm, moist air
near the earths surface becomes heated and rises
rapidly, producing an updraft. As the air in
these updrafts cools, water vapor condenses into
water droplets and forms a cloud. The clouds top
extends above the freezing level. At this
altitude, the air temperature is well below
freezing, so the upper portion of the cloud is
composed of tiny ice crystals.
Eventually, the water droplets and ice crystals
in the cloud become too large to be suspended by
updrafts. As raindrops and ice crystals fall
through the cloud, they drag some of the air from
the cloud downward, producing downdrafts. The
rising and falling air currents within the cloud
may cause hailstones to form. When downdrafts
strike the ground, they spread out in all
directions, producing gusts of cool wind people
feel just before the start of the rain.
Within the cloud, the moving air causes
electrical charges to build, although scientists
do not fully understand how it occurs. Most
believe that the charge results from the
collision of the clouds light, rising water
droplets and tiny pieces of ice against hail and
other heavier, falling particles. The negatively
charged particles fall to the bottom of the
cloud, and most of the positively charged
particles rise to the top.
The first stroke of a cloud-to-ground lightning
flash is started by a stepped leader. Many
scientists believe that it is triggered by a
spark between the areas of positive and negative
charges within the cloud. A stepped leader moves
downward in a series of steps, each of which is
about 50-yards long, and lasts for about 1
millionth of a second. It pauses between steps
for about 50 millionths of a second. As the
stepped leader nears the ground, positively
charged upward-moving leaders travel up from such
objects as trees and buildings, to meet the
negative charges. Usually, the upward moving
leader from the tallest object is the first to
meet the stepped leader and complete a path
between the cloud and earth. The two leaders
generally meet about 165-feet above the ground.
Negatively charged particles then rush from the
cloud to the ground along the path created by the
leaders. It is not very bright and usually has
many branches.
As the stepped leader nears the ground, it
induces an opposite charge, so positively charged
particles from the ground rush upward along the
same path. This upward motion of the current is
the return stoke and it reaches the cloud in
about 70 microseconds. The return stoke produces
the bright light that people notice in a flash of
lightning, but the current moves so quickly that
its upward motion cannot be perceived. The
lightning flash usually consists of an electrical
potential of hundreds of millions of volts. The
air along the lightning channel is heated briefly
to a very high temperature. Such intense heating
causes the air to expand explosively, producing a
sound wave we call thunder.
Uzamsal Süreklilik Metin ve sekiller
18The first stroke of a cloud-to-ground lightning
flash is started by a stepped leader. Many
scientists believe that it is triggered by a
spark between the areas of positive and negative
charges within the cloud. A stepped leader moves
downward in a series of steps, each of which is
about 50-yards long, and lasts for about 1
millionth of a second. It pauses between steps
for about 50 millionths of a second. As the
stepped leader nears the ground, positively
charged upward-moving leaders travel up from such
objects as trees and buildings, to meet the
negative charges. Usually, the upward moving
leader from the tallest object is the first to
meet the stepped leader and complete a path
between the cloud and earth. The two leaders
generally meet about 165-feet above the ground.
Negatively charged particles then rush from the
cloud to the ground along the path created by the
leaders. It is not very bright and usually has
many branches.
Branches
Stepped leader
Upward-moving leader
Two leaders meet, negatively charged particles
rush from the cloud to the ground.
As the stepped leader nears the ground, it
induces an opposite charge, so positively charged
particles from the ground rush upward along the
same path. This upward motion of the current is
the return stoke and it reaches the cloud in
about 70 microseconds. The return stoke produces
the bright light that people notice in a flash of
lightning, but the current moves so quickly that
its upward motion cannot be perceived. The
lightning flash usually consists of an electrical
potential of hundreds of millions of volts. The
air along the lightning channel is heated briefly
to a very high temperature. Such intense heating
causes the air to expand explosively, producing a
sound wave we call thunder.
Positively charged particles from the ground rush
upward along the same path.
Uzamsal Süreklilik Metin ve sekiller
193. Zamansal Süreklilik Ilkesi
- Birbiriyle iliskili sözcük ve resimler ekran ya
da sayfa üzerinde eszamanli olarak sunulursa
ögrenciler daha iyi ögrenirler.
20Cool moist air moves over a warmer surface and
becomes heated. Warmed moist air near the earths
surface rises rapidly. As the air in this updraft
cools, water vapor condenses into water droplets
and forms a cloud. The clouds top extends above
the freezing level, so the upper portion of the
cloud is composed of tiny ice crystals.
Eventually, the water droplets and ice crystals
become too large to be suspended by the updrafts.
As raindrops and ice crystals fall through the
cloud, they drag some of the air in the cloud
downward, producing downdrafts. When downdrafts
strike the ground, they spread out in all
directions, producing the gusts of cool wind
people feel just before the start of the rain.
Within the cloud, the rising and falling air
currents cause electrical charges to build.
21Zamansal Süreklilik Ilkesi Yildirimin nasil
olustugu ile ilgili animasyon (Animasyon ve sözel
anlatim eszamanli
224. Modalite (Modality) Ilkesi
- Ögrenciler, animasyon ve metin yerine animasyon
ve sesten (sözel anlatim) daha iyi ögrenirler
235. Fazlalik Ilkesi
- Ögrenciler, hem sözel hem de metin olarak verilen
sunum yerine sadece sözel olarak verilen sunumdan
daha iyi ögrenirler. - Sözel açiklama gt Sözel açiklama Metin
- NOT Sunum ile ilgili önemli noktalar metin
olarak ekranda gösterilebilir!
24(No Transcript)
256. Tutarlilik Ilkesi
- Ögrenciler, ilginç fakat gereksiz
materyaller/detaylar (resim, ses, müzik, bilgi)
arindirildiginda daha iyi ögrenirler.
26(No Transcript)
27Gereksiz resimler
287. Etkilesim Ilkesi
- Ögrenciler, sunumu kontrol edebildiklerinde daha
iyi ögrenirler. - Örn sözel olarak sunulan bir animasyonu
ögrencinin kendi hizina göre ilerletmesi.
29Herman personal
Continue
Cool moist air moves over a warmer surface and
becomes heated.
308. Isaret Etme Ilkesi
- Ögrenciler, önemli kelime ya da cümleler
vurgulandiginda (örn altini çizme), sunumun
nasil ilerleyecegi ile ilgili ipuçlari
verildiginde daha iyi ögrenirler.
31Isaret etmenin uygulandigi ve uygulanmadigi metin
örnekleri
Isaret Etme Uygulanmis Metin Baslik içerir
Wing shape Curved upper surface is longer.
Önemli bilgileri vurgular The upper surface
of the wing is curved more than the bottom
surface. Because its curved, the surface on the
top of the wing is longer than on the bottom.
Isaret Etme Uygulanmamis Metin Baslik içermez
Önemli bilgileri vurgulamaz The upper surface
of the wing is curved more than the bottom
surface. The surface on the top of the wing is
longer than on the bottom.
329. Kisisellestirme Ilkesi
- Ögrenciler, diyalog biçiminde verilen metin veya
konusmalardan daha iyi ögrenirler. - Örn
- Bilgisayarim simgesinden USB ye tikla
- yerine
- Simdi Bilgisayarim simgesinden USB ye tiklayalim.
- Bu problemi çözmek için bana yardim etmek ister
misin?.....
3310. Ön Egitim Ilkesi
- Ögrenciler, sözel olarak sunulan bir animasyonu
izlemeden önce animasyondaki önemli bilesenlerin
isimlerini ve temel özelliklerini bilirlerse daha
iyi ögrenirler.
34Diger (Ek) Ilkeler
- Ögrencilerin duragan diyagramlara göre
animasyonlardan daha iyi ögrendikleri söylenemez.
- Animasyonlar psikomotor becerilerin ögretiminde
etkilidir. - Web-tabanli ortamlarda ögrencilere gezinimlerini
kolaylastiracak yardimlarin sunulmasi
ögrenmelerini kolaylastirir. - Örn site haritasi, yönergeler
- Burada açiklanan çokluortam ilkelerinin birçogu
acemi ögrenenler içindir, uzman ögrenciler için
geçerli olmayabilir.
35Kaynaklar
- Clark, R. C. Mayer, R. E. (2008). eLearning and
the science of instruction (2nd ed.). San
Francisco, CA Pfeiffer. - Clark, R. C., Chopeta, L. (2004). Graphics for
learning Proven guidelines for planning,
designing and evaluating visuals in training
materials. San Francisco, CA John Wiley Sons. - Lohr, L. (2006). Creating visuals for learning
and performance Lessons in visual literacy (2nd
ed.). Cleveland, OH Prentice-Hall. - Mayer, R. E. (2001). Multimedia learning. New
York Cambridge University Press. - Mayer, R.E. (2009) Multi-media Learning (2nd Ed).
NY Cambridge University Press.