Effects of mesostructure on the in-plane properties of tufted carbon fabric composites - PowerPoint PPT Presentation

1 / 14
About This Presentation
Title:

Effects of mesostructure on the in-plane properties of tufted carbon fabric composites

Description:

Title: Presentation Title 30pt Date, defused light 20pt Presenter s Full Name, defused light 16pt Position, defused light 16pt Author: Administrator – PowerPoint PPT presentation

Number of Views:92
Avg rating:3.0/5.0
Slides: 15
Provided by: epf1
Category:

less

Transcript and Presenter's Notes

Title: Effects of mesostructure on the in-plane properties of tufted carbon fabric composites


1
Effects of mesostructure on the in-plane
properties of tufted carbon fabric composites
CompTest 2011, 14th February 2011 Johannes W G
Treiber Denis D R Cartié Ivana K
Partridge j.treiber_at_cranfield.ac.uk
2
Tufting process
- Modified one-sided stitching process
- Automated insertion of carbon, glass or
aramid thread - For dry composite preforms
0.5 carbon tufted NCF
Top
Automated KSL KL150 tufting head
Hollow needle
Presser foot
Dry fabric
Bottom
Tuft thread loop
Support foam
Tufting process
Meso-structure
Exp. database
FE-Models
3
Introduction
Main purpose Through-the-thickness
reinforcement technique 460/60 mode I/II
delamination toughness for only 0.5 areal
tuft density (Cranfield)
Tuft bridging
Delamination crack
DCB of 0.5 carbon tufted NCF
Drawback Potential reduction of in-plane
properties
Stitching - considerable database
Stiffness -15 to 10 Tensile strength -25 to
25
Tufting - to date only 3 experimental
studies (KU Leuven, Cranfield) Tensile
strengths -14 to 10 no agreement
Need for detailed testing database on wider range
of tufted materials
Tufting process
Meso-structure
Exp. database
FE-Models
4
Materials
- Carbon Preforms Uni-weave - 07 ,
010 balanced NCF - (0/90)s2 -
Tufted with 2k HTA carbon thread in at sx sy
5.6 mm (0.5) /2.8 mm (2)
Square arrangement
  • Cross-over
  • Pattern shift

Free loop height 3.5 5 mm
- RTM injection of epoxy resin (ACG MVR 444) for
dimensional control
Tufting process
Meso-structure
Exp. database
FE-Models
5
In-plane tension behaviour
Tensile tests (BS EN ISO 527-41997)
Property changes depend on fabric and tuft
morphology
Tufting process
Meso-structure
Exp. database
FE-Models
6
Meso-structure
In-plane disturbance (x-y)
Triangular
UD
4
w ,f
UD 6 NCF 10
Resin pocket
Fabric deviation
Tuft
0.5
2.0
Square
w
Thermal crack
Square
w,f
2f
UD 3 NCF 4
7
NCF
Tufting process
Meso-structure
Exp. database
FE-Models
7
Meso-structure
Out-of-plane disturbance (x-z/y-z)
Thread seam
Surface crimp
z
x
Vf f(wi,tloop, tthread)
Thread layer tth
Loop layer tl
  • Surface seam causes local fabric crimp
  • Resin rich layers and pockets affect global and
    local Vf

z
y
Tufting process
Meso-structure
Exp. database
FE-Models
8
Numerical Unit Cell model
f cosine fct.
Loop
Vf f(tl,tth,wi)
¼ UC
Resin channel
Tuft
y
Thread
y
x
wi
Smeared UD
x
Parametric 3D Unit Cell model (Marc) UD, NCF,
square and triangular arrangement
Isotropic, linear elastic material Rule of
mixtures (Chamis)
Failure and degradation
Ply Puck (FF 3 modes of IFF) Resin Maximum
strength
Knops, Comp. Sci. Tech. 2006
Tufting process
Meso-structure
Exp. database
FE-Models
9
Failure prediction NCF
0 Ply
¼ UC
A
Transverse tension failure
A
Longitudinal splitting
0.5 NCF
Cracks
  • Accurate modulus and strength, also for 2
    density (error lt 2/4)
  • Fabric straightening leads to transverse tension
    failure in fabric and longitudinal splitting of
    resin pocket

Longitudinal splitting
Tufting process
Meso-structure
Exp. database
FE-Models
10
Failure prediction NCF
0 Ply
B
¼ UC
B
Fibre failure initiation
0.5 NCF
Rupture
Tuft
0
  • Ultimate fabric fibre failure in close vicinity
    of tuft

Tufting process
Meso-structure
Exp. database
FE-Models
11
Vf distribution
0.5 NCF
  • Local fabric fibre distribution affects both
    stiffness and strength prediction
  • Gradient Vf model agrees best with true
    morphology and tension results

Tufting process
Meso-structure
Exp. database
FE-Models
12
Fibre misalignment f
0.5 square
wmin
  • Fabric fibre deviation critical on tensile
    strength, effect on modulus negligible
  • UD strength more sensitive to fabric deviation

Tufting process
Meso-structure
Exp. database
FE-Models
13
Tuft arrangement
UD
  • Upper and lower strength bounds defined by square
    and triangular pattern
  • Triangular pattern causes most critical strength
    reduction

Tufting process
Meso-structure
Exp. database
FE-Models
14
Conclusions
  • Tuft introduces structural complexity into
    Z-reinforced composite
  • Critical meso-structural tuft defects resin rich
    pockets, fibre deviation, matrix cracking and
    local fibre compaction
  • Tufting has no effect on longitudinal tensile
    stiffness of UD and biaxial NCF composite, but
    surface loops increase matrix dominated
    transverse stiffness
  • Reduction in longitudinal tensile strength most
    prominent for UD (lt-19)
  • Fibre undulation most critical contributing
    factor, fibre breakage limited effect on tensile
    strength
  • High quality experimental morphology data allows
    accurate tensile stiffness and strength
    prediction of tufted composites
Write a Comment
User Comments (0)
About PowerShow.com