Title: Two-locus systems
1Two-locus systems
2Scheme of genotypes
Two-locus genotypes
genotype
genotype
genotype
Multilocus genotypes
3Two-locus two allele population
Gamete
p1 p2 p3 p4
Next generation on zygote level
Independent combination of randomly chosen
parental gametes
4Table gametes from genotypes I
(1-r) no cross-over
(r) cross-over
Type zygote- one locus is homozygotes
Zygote
Zygote (AB,Ab) have gamete (AB) with frequency
0.5(1-r)0.5r0.5
gamete
0.5(1-r)
0.5(1-r)
0.5(r)
0.5(r)
5Table gametes from genotypes II
(r) cross-over
(1-r) no cross-over
Type zygote- both loci is heterozygotes
Zygote
Zygote (AB,ab) have gamete (AB) with frequency
0.5(1-r)
gamete
0.5(1-r)
0.5(1-r)
0.5(r)
0.5(r)
6gamete
Position effect
7Table zygote productions
AB p1p12p1p2p1p3(1-r)p1p4rp2p3
Evolutionary equation for genotype AB
8p1p12p1p2p1p3(1-r)p1p4rp2p3 p2p22p1p2p2p
4rp1p4(1-r)p2p3 p3p32p3p4p1p3rp1p4(1-r)p2p
3 p4p42p3p4p2p4(1-r)p1p4rp2p3
r is probabilities of cross-over (coefficient of
recombination). Usually 0? r ? 0.5. If r0.5 then
loci are called unlinked (or independent). If r0
then population transform to one loci population
with four alleles.
AB Ab aB ab p1 p2 p3 p4
9Measure of disequilibria D p1p4-p2p3
10p1p1- rD p2p2 rD p3p3 rD
p4p4 - rD.
p1p2p(A) p1p3p(B)
AB Ab aB ab p1 p2 p3 p4
Gene Conservation Low p1 p2 p1 p2p(A)
p1 p3 p1 p3p(B)
11Two-locus two allele population. Equilibria.
p1p1- rD p2p2 rD p3p3 rD p4p4 - rD.
Measure of disequilibria D p1p4-p2p3
D0 p1p4 p2p3
12p1 p(A) p(B) p2 p(A) p(b) p3 p(a) p(B) p4
p(a) p(b).
In equilibria point the genes are statistically
independence.
But the genes are dependent physically, because
are in pairs on chromosome
Measure of disequilibria D p1p4-p2p3
13Convergence to equilibrium
p1p1- rD p2p2 rD p3p3 rD p4p4 - rD.
Dp1p4- p2p3
D(p1- rD )(p4 - rD)-(p2 rD)(p3 rD)
p1 p4- p2p3
-rD(p1p2p3p4)
(rD)2-(rD)2
D
D(n)(1-r)nD(0)
DD-rD(1-r)D
Maximal speed convergence to equilibrium for r0.5
D(n)(0.5)nD(0)
14Gene Conservation Low p1 p2 p1 p2p(A)
p1 p3 p1 p3p(B)
p1 p(A) p(B) p2 p(A) p(b) p3 p(a) p(B) p4
p(a) p(b).
Infinite set of equilibrium points
15p1p12p1p2p1p3(1-r)p1p4rp2p3 p2p22p1p2p2p
4rp1p4(1-r)p2p3 p3p32p3p4p1p3rp1p4(1-r)p2p
3 p4p42p3p4p2p4(1-r)p1p4rp2p3
r0
p1p12p1p2p1p3p1p4 p1 p2p22p1p2p2p4p2p3
p2 p3p32p3p4p1p3p2p3 p3 p4p42p3p4p2p
4p1p4 p4
p1p1- rD p2p2 rD p3p3 rD p4p4 - rD.
16p1p12p1p2p1p3(1-r)p1p4rp2p3 p2p22p1p2p2p
4rp1p4(1-r)p2p3 p3p32p3p4p1p3rp1p4(1-r)p2p
3 p4p42p3p4p2p4(1-r)p1p4rp2p3
r1
p1p12p1p2p1p3p2p3 (p1p2)(p1p3)
p(A)p(B) p2p22p1p2p2p4p1p4 (p1p2)(p2p4)
p(A)p(b) p3p32p3p4p1p3p1p4
(p3p4)(p1p3) p(a)p(B) p4p42p3p4p2p4p2p3
(p3p4)(p2p4) p(a)p(b)
p1p1- rD p2p2 rD p3p3 rD p4p4 - rD.
D(n)(1-r)nD(0)
17simulation
18Multilocus multiallele population
Three loci
19(No Transcript)
20Equilibrium point
Equilibrium pointlimiting point of trajectories
21General case
22M loci and L alleles in each locus
23Problem definition of the linkage
distribution. Nonrandom crossovers.
24(No Transcript)
25 definition of the linkage distribution.
26Equilibrium point for multilocus population
27Polyploids systems
284-ploids
2-ploids (diploids)
Chromatid dabbling
Four gamete produced
29Problem definition of the coefficients.
30Polyploids systems
31(No Transcript)