Title: Michaelson Morley Experiment
1- Präzisions-Physik mit Neutronen
- Neutronenquellen
- Physik mit Neutronen, allgemein
- Neutronen-Experimente jenseits SM
- Theorie Standard Modell
- Neutronen-Experimente diesseits SM
- Theorie n-Zerfall
- D. Dubbers
- U. Heidelberg
2 Neutronenquellen1.1 Reaktor Neutronenquellen1.
2 Spallations-Neutronenquellen1.3 Ultrakalte
Neutronen
3 Physik mit Neutronen allgemein 2.1
Neutronen-Streuung2.3 Angewandte Neutronenphysik
4Besonderheiten des Neutrons
- Neutronen
- sehen besonders gut die leichten Atome (z.B.
Wasserstoff-Brücken) - sehen einzelne Isotope (Kontrastvariation)
- sehen Magnetismus (Spintronik)
- sehen Bewegungen der Moleküle, Spins, (auch sehr
langsame) - separat für alle Längenskalen
- (En Anregungsenergien des Festkörpers,
- ?n Gitterkonstante des Festkörpers)
- sehen getrennt kohärente und inkohärente Prozesse
- (Paar- und Autokorrelations-Funktionen)
- machen wenig Vielfachstreuung
- sind meist sehr durchdringend
5Neutronen-Experimente jenseits des SM3.1
Einführung3.2 Einige Experimente
63.1 Einführung
History of the universe a succession of phase
transitions
7The Standard Model of particle physics
- small input SYMMETRIES Gauge principle ?'(x)
ei?(x) ?(x) - ('principia') applied to U(1)SU(2)SU(3),
- ( Lorentz x' Lx, CPT etc. invariances,
) - rich output INTERACTIONS
- basis for
- ? equations of motion Maxwell,
technology, - Schrödinger, chemistry,
- Dirac, molec. biology,
- solar/nuclear power,
- ? existence of photons, gluons, W, Z0
( carriers of interaction) - ? conservation of charges (
sources of interaction) - ? generation of masses
is very successful ...
8 but is only part of the picture
- Unsolved problems
- 3 particle families
- 12 masses ?
- 4 quark-phases 4 lepton-phases
-
- gravitation and quantum mechanics
- baryon-asymmetry of universe ?
- mass-energy content of universe
- Test all laws of physics with the highest
possible precision - (including energy conservation, Lorentz-,
CPT-invariance, ). - To be tested, laws must be well known
- this is the case mostly in the electroweak and
the gravitational sector.
9Particle physics at the lowest energies
Mx
10Precision reached in low-energy work
- in energy dE lt 10-23 eV 0.000 000 000 000
000 000 000 01 eV - reached in high-precision ultracold neutron
and atom work - in momentum dp/p lt 10-11 1Å/10m p
- reached in state-of-the-art neutron optics
dp - in mass dm/m 10-11
- reached in atomic mass spectrometry
-
- in time dt/t 10-16
- reached with atomic clocks
- in spin-polariz. dP lt 10-7
- reached in polarized neutron work
11Low energy mostly 1st family
- quarks leptons
- 3rd b t t ?t
- 2nd s c µ ?µ
- 1st d u e ?e
- first family is
- - abundant,
- - long-lived,
- - useful.
123.2 Einige Experimente 1. Why is charge
quantized?
13Theory of charge quantization
142. Why has so much matter survived the Big Bang?
Big Bang theory baryon density 10-18 photon
density baryon density antibaryon
density Observation baryon density 10-9
photon density baryon density gtgt antibaryon
density possible explanation Violation of
'CP-symmetry' Experimentum crucis Electric
Dipole Moment dn of the neutron if
'CP' explanation is right dn 10-27 ? 1 e
cm value required to explain our existence
if 'CP' explanation is wrong dn
10-32 ? 1 e cm value predicted by the
Standard Model Meas.time t from uncertainty rel.
N ?f 1 with ?f ?Bohr t dnE/h t,
i.e. error ?N ?f N
½ ??Bohr t (?UCNV)½ ?dnE t 1 1
Bohr-period/year 10-23 eV
60 years of instrument development
M.v.d. Grinten, K. Jungmann, Sa vorm., S. Paul,
Di abend
153. Are there extra spatial dimensions?
16Neutron quantization in the earth's gravitational
field
Ultracold neutrons (UCNs) probe Newton's law in
the µ-meter and the pico-eV range, set limits on
such extra forces.
17UCN gravitational levels
- Neutron density above the mirror measured with a
position-sensitive detector with spatial
resolution of 1.5 µm
Measurement of neutron transmission as a function
of the height of the absorber above the neutron
mirror.
18Experimental limits on non-Newtonian gravity
Ph. Schmidt-Wellenburg, Sa Vorm. Schleching 2006
Difficulties of AFM Electrostatics, geometry,
roughness, lateral Casimir force, theory
194. Neutron oscillations
a) Is baryon number conserved?
- Neutrinos oscillate ?e? ?µ , etc. ?m
- Lepton number oscillations Le ? Lµ, etc. 0.05
eV - Kaons oscillate K ? K'
- Strangeness oscillations S ? ? S 10-18
eV - Do neutrons oscillate? n ? nbar
- Baryon-number oscillations B ? ? B ?
- Neutron oscillations allowed in various
Grand-Unified Theories
20The ILL neutron oscillation experiment
The magnetically shielded beam lt 5 nT
The antineutron detector
'Appearence experiment' Experimental limit tn
nbar gt 0.86108 s (90 c.l.) ?mc2
ltnHnbargt lt 10-23 eV probes 105 GeV range
(model dependent) Heidelberg-ILL-Padova-Pavia
collaboration (M. Baldo-Ceolin et al., 1994)
21b) Is Dark Matter from a mirror world?
- Is there a sterile mirror world?
- Mohapatra, 2005 n ? nmirror
- can neutrons spontaneously disappear into
sterile, - i.e. unobservable mirror neutrons?
- Search for neutron - mirror-neutron oscillations
- Experiment U. Schmidt, spring 2007
- using zero-field spin-echo apparatus at FRM2, and
ultrafast 'CASCADE' n-detector - 'disappearence experiment' - experimental limit
- NBgt0/NB0 1.00002(3) ? tn-nmirror gt 2.7 s
(90 c.l.) - September 2007 New limit from ILL, Serebrov et
al. tn-nmirror gt 400 s (90 c.l.)
K. Kirch, Mo Abend?
22Summary low-energy neutron physics beyond S.M.
- Why is charge quantized? (qn)
- Why is so much matter and so little antimatter
in the universe? (EDM) - Are there hidden dimensions of space-time?
(n-free fall) - Can matter oscillate into antimatter?
(n-nbar) - Is there a sterile mirror world?
(n-nmirror) - (Paul Di Abend)