Title: Lecture 5 EGRE 254
1Lecture 5EGRE 254
2Boolean algebra
- a.k.a. switching algebra
- deals with Boolean values -- 0, 1
- Positive-logic convention
- analog voltages LOW, HIGH --gt 0, 1
- Negative logic -- seldom used
- Signal values denoted by variables(X, Y, FRED,
etc.)
3Boolean operators
- Complement X or (opposite of X)
- AND X Y
- OR X Y
binary operators, describedfunctionally by truth
table.
4More definitions
- Literal a variable or its complement
- X, X, FRED, CS_L
- Expression literals combined by AND, OR,
parentheses, complementation - XY
- P Q R
- A B C
- ((FRED Z) CS_L A B C Q5) RESET
- Equation Variable expression
- P ((FRED Z) CS_L A B C Q5)
RESET
5Logic symbols
6Basic Axioms
A1 A1
A2 A2
A3 A3
A4 A4
A5 A5
7Proving theorems
- Using axioms or theorems already proven.
- Perfect induction Verify theorem for all
possible values of the variables. - 1 variable 2 21 possible values. 0, 1
- 2 variables 4 22 possible values. 00, 01, 10,
11 - 3 variables 8 23 possible values. 000, 001, ,
111 - n variables 2n possible values.
- For general case of n variable we use the
mathematical technique of finite induction.
8Prove T1 and T1
- T1 X 0 X
- Proof 1a
- If X 0 then X 0 X by A4
- If X 1 then X 0 X by A5
- Proof 2a,b
- T1 X?1 X
- Proof 1b
- If X 1 then X?1 X by A4
- If X 0 then X?1 X by A5
- Proof 3b
- T1 follows from duality of T1.
X X0 X?1
0 0 0
1 1 1
9Basic Theorems
T1 T1
T2 T2
T3 Idempotent law T3
T4 T4 Same as T4
T5 T5
10Theorems
T6 Commutative law T6
T7 Associative law T7
T8 Distributive law T8
T9 Adsorption law T9
T10 T10
T11 T11
11T8
- Not what we would expect!
- Proof 1 using truth table (perfect induction)
X Y Z XY XZ YZ (XY)(XZ) X YZ
0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0
0 1 0 1 0 0 0 0
0 1 1 1 1 1 1 1
1 0 0 1 1 0 1 1
1 0 1 1 1 0 1 1
1 1 0 1 1 0 1 1
1 1 1 1 1 1 1 1
12T8
- Proof 2 Algebraically using proved theorems
- (X Y)(X Z) (XY)X (XY)Z Why?
- XXYXXZYZ
T6, T8 - XXYXZYZ
T3, T6 - X?1 X(YZ) YZ
T1, T8 - X(1(YZ)) YZ
T8 - X?1 YZ
T6, T1 - X YZ
T1 - Better
- (X Y)(X Z) X XZ XY YZ
- X(1ZY) YZ X YZ
- Proof 3 Follows from T8 and duality.
13Algebraic Proofs
- T10 XYXY X(YY) X?1 X
- T10 (XY)(XY) XXYXYYY
- X(1YY) 0 X(1) X
- T11 XYXZYZ XYXZ(XYZXYZ)
- XY(1Z) XZ(1Z) XY XZ
- T11 Do as an exercise.
14Example using T9
- (AB)C (AB)CD(EF) (AB)C
- Treat (AB)C as X, treat D(EF) as Y
- Or instead of using T9 recognize that
- (AB)C (AB)CD(EF) (AB)C(1D(EF))
(AB)C - It is not necessary to memorize all of these
theorems. - Know through T5 and couple that with your
knowledge of ordinary algebra.
15XOR
- X ? Y XY XY
- X ? 0 X
- X ? 1 X
- X ? X 0
- X ? X 1
- X ? Y ? Z X ? (Y ? Z) Z ? X ?Y
X Y X?Y
0 0 0
0 1 1
1 0 1
1 1 0
16How are these XOR gates used?
17DeMorgans Theorem
- These are the equations you must memorize
- But notice that given one it is trivial to obtain
the others.
18 Prove
X Y X Y XY XY (XY)
0 0 1 1 1 0 1
0 1 1 0 0 1 0
1 0 0 1 0 1 0
1 1 0 0 0 1 0
Alternative proof. Let X 0 then 1Y (0
Y) Let X 1, then 0Y (1Y) 1 0
19DeMorgans Theorem in n variables
20Generalizations
- DeMorgans Theorem
- Duality. If
- then
21(No Transcript)
22Shannons expansion theorem
Proof Consider f(xi) xif(0)xi xif(1)xi When
xi 0 then f(0)xi 1f(0)xi 0f(1)xi
f(0)xi When xi 1 then f(1)xi 0f(0)xi
1f(1)xi f(1)xi Thus, by perfect induction f(xi)
xif(0)xi xif(1)xi
23Implementation example
- Draw circuit directly from equations.
- Draw circuit using only NAND gates.
24Design example
- Design a 3-input majority circuit
X Y Z F
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1
25Design example
- Design a 3-input majority circuit
X Y Z F
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1
26Design example
- Design a 3-input majority circuit
27Design example
- Design a 3-input majority circuit
X Y Z F
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1
28Design example
- Design a 3-input majority circuit
29Example
- Show how to build an 8 input and gate using
several two input and gates. - Which is better? Why?
30Schmitt-trigger gates
- contain input hysteresis. Useful for interfacing
to slow or noisy signals.
31(No Transcript)
32Tri-state buffers