Graph - PowerPoint PPT Presentation

About This Presentation
Title:

Graph

Description:

Graph C and Data Structures Baojian Hua bjhua_at_ustc.edu.cn What s a Graph? Graph: a group of vertices connected by edges Why Study Graphs? Interesting & broadly used ... – PowerPoint PPT presentation

Number of Views:169
Avg rating:3.0/5.0
Slides: 38
Provided by: educ5460
Category:

less

Transcript and Presenter's Notes

Title: Graph


1
Graph
  • C and Data Structures
  • Baojian Hua
  • bjhua_at_ustc.edu.cn

2
Whats a Graph?
  • Graph a group of vertices connected by edges

3
Why Study Graphs?
  • Interesting broadly used abstraction
  • not only in computer science
  • challenge branch in discrete math
  • Ex the 4-color problem
  • hundreds of known algorithms
  • with more to study
  • numerous applications

4
Broad Applications
Graph Vertices Edges
communication telephone cables
software functions calls
internet web page hyper-links
social relationship people friendship
transportation cities roads

5
Graph Terminology

1
2
3
4
6
5
A sample graph taken from chapter 22 of
Introduction to Algorithms.
6
Graph Terminology

7
Graph ADT
  • A graph is a tuple (V, E)
  • V is a set of vertices v1, v2, , vn
  • E is a set of edges ltvi, vjgt (1lti, jltn)
  • Typical operations
  • graph creation
  • search a vertex (or an edge)
  • traverse all vertexes

8
Example
G (V, E) V 1, 2, 3, 4, 5, 6 E (1,
2), (2, 5), (3, 5), (3,
6), (4, 1), (4, 2), (5,
4), (6, 6)

9
Representation
  • Two popular strategies
  • array-based (adjacency matrix)
  • Keep an extensible two-dimensional array M
    internally
  • Mij holds the edge ltvi, vjgt, if there exists
    one
  • linear list-based (adjacency list)
  • for every vertex vi, maintain a linear list
    listltvigt
  • listltvigt stores vis out-going edges

10
Adjacency Matrix
0
5
1
2
3
4






0
1
2
Note the mapping function map (n) n-1
3
4
5
11
Adjacency List

1
1-gt2
2
2-gt5
3
3-gt5
3-gt6
4
4-gt1
4-gt2
5
5-gt4
6
6-gt6
12
graph ADT Interface
  • // This slides assume all graphs directed.
  • // Undirected ones are similar and easier.
  • // In file graph.h
  • ifndef GRAPH_H
  • define GRAPH_H
  • define T Graph_t
  • typedef struct T T
  • T Graph_new ()
  • void Graph_insertVertex (T g, poly data)
  • void Graph_insertEdge (T g, poly from, poly to)
  • // more to come later
  • undef T
  • endif

13
Client Code
graph g newGraph () insertVertex (g,
1) insertVertex (g, 2) insertVertex (g,
6) insertEdge (g, 1, 2) insertEdge (g, 2,
5) insertEdge (g, 6, 6)

14
Graph Implementation 1 Adjacency Matrix
  • // adjacency matrix-based implementation
  • include matrix.h
  • include dict.h
  • include graph.h
  • struct Graph_t
  • Matrix_t m
  • // remember the index
  • Dict_t d

0
2
3
1




0
1
2
3
15
Matrix Interface
  • // file matrix.h
  • ifndef MATRIX_H
  • define MATRIX_H
  • define T Matrix_t
  • typedef struct T T
  • T Matrix_new ()
  • void Matrix_assign (matrix m, int i, int j)
  • int Matrix_getNextIndex (matrix m)
  • endif
  • // Implementation may make use of a two-
  • // dimensional extensible array, leave to you.

16
Adjacency Matrix-based Graph Creation
  • T Graph_new ()
  • T g malloc (sizeof (g))
  • g-gtm Matrix_new () // an empty matrix
  • g-gtd Dict_new () // an empty dictionary
  • return g

17
Adjacency Matrix-based Inserting Vertices
  • void Graph_insertVertex (T g, poly data)
  • int i Matrix_getNextIndex (g-gtmatrix)
  • Dict_insert (g-gtdict, data, i)
  • return

0
1
2
3
4





0
2
3
0
1




0
1
1
2
2
3
3
4
18
Graph Implementation 1 Inserting Edges
  • void Graph_insertEdge (T g, poly from, poly to)
  • int f Dict_Lookup (g-gtdict, from)
  • int t Dict_Lookup (g-gtdict, to)
  • Matrix_assign (g-gtmatrix, f, t)
  • return

0
1
2
3
4





0
2
3
0
1




0
1
1
2
2
3
3
4
19
Summary
  • Pros
  • Relatively easy to implement
  • But need another level of indirection from data
    to array indexes
  • Searching vertices or edges can be fast
  • May be too space-consuming
  • many empty slots in matrix it the graph has many
    vertices but few edges

20
Graph Representation 2 Adjacency List
struct T List_Tv vertices struct Tv
poly data List_Te edges struct Te Tv
from Tv to
  • include linked-list.h
  • include graph.h
  • define T Graph_t
  • define Tv Vertex_t
  • define Te Edge_t
  • define List_Tv \ LinkedList_t
  • define List_Te \
  • LinkedList_t
  • typedef struct Tv Tv
  • typedef struct Te Te

21
Graph Representation 2 Adjacency List
  • struct T
  • List_Tv vertices
  • struct Tv
  • poly data
  • List_Te edges
  • struct Te
  • Tv from
  • Tv to

22
Adjacency List-based Graph Creation
  • // Convention for colors
  • // graph, linkedList, data, vertex, edge
  • T Graph_new ()
  • T g malloc (sizeof (g))
  • g-gtvertices LinkedList_new ()
  • return g

23
Adjacency List-basedCreating New Vertex
  • // Convention for colors
  • // graph, linkedList, data, vertex, edge
  • Tv Vertex_new (poly data)
  • Tv v malloc (sizeof (v))
  • v-gtdata data
  • v-gtedges LinkedList_new ()
  • return v

24
Adjacency List-basedCreating New Edge
  • // Convention for colors
  • // graph, linkedList, data, vertex, edge
  • Te Edge_new (Tv from, Tv to)
  • Te e malloc (sizeof (e))
  • e-gtfrom from
  • e-gtto to
  • return e

25
Adjacency List-basedInserting New Vertex
  • void Graph_insertVertex (T g, poly data)
  • Tv v Vertex_new (data)
  • LinkedList_insertTail (g-gtvertices, v)
  • return

26
Adjacency List-basedInserting New Edge
  • void Graph_insertEdge (T g, poly from, poly to)
  • Tv vf lookupVertex (g, from)
  • Tv vt lookupVertex (g, to)
  • Te e Edge_new (vf, vt)
  • LinkedList_insertTail (vf-gtedges, e)
  • return
  • // insert 0-gt4

27
Adjacency List-basedInserting New Edge
  • void Graph_insertEdge (T g, poly from, poly to)
  • Tv vf lookupVertex (g, from)
  • Tv vt lookupVertex (g, to)
  • Te e Edge_new (vf, vt)
  • LinkedList_insertTail (vf-gtedges, e)
  • return

28
Adjacency List-basedInserting New Edge
  • void Graph_insertEdge (T g, poly from, poly to)
  • Tv vf lookupVertex (g, from)
  • Tv vt lookupVertex (g, to)
  • Te e Edge_new (vf, vt)
  • LinkedList_insertTail (vf-gtedges, e)
  • return

29
Adjacency List-basedInserting New Edge
  • void insertEdge (graph g, poly from, poly to)
  • Tv vf lookupVertex (g, from)
  • Tv vt lookupVertex (g, to)
  • Te e Edge_new (vf, vt)
  • LinkedList_insertTail (vf-gtedges, e)
  • return

0
0-gt1
0-gt2
0-gt3
0-gt4
1
2
3
4
30
Adjacency List-basedInserting New Edge
  • void insertEdge (T g, poly from, poly to)
  • Tv vf lookupVertex (g, from)
  • Tv vt lookupVertex (g, to)
  • Te e Edge_new (vf, vt)
  • LinkedList_insertTail (vf-gtedges, e)
  • return

0
0-gt1
0-gt2
0-gt3
0-gt4
1
2
3
4
31
Example

32
Client Code for This ExampleStep 1 Cook Data
  • T g Graph_new ()
  • Int_t n1 Int_new (1)
  • Int_t n2 Int_new (2)
  • Int_t n3 Int_new (3)
  • Int_t n4 Int_new (4)
  • Int_t n5 Int_new (5)
  • Int_t n6 Int_new (6)

2
3
1
4
6
5
33
Client Code ContinuedStep 2 Insert Vertices
  • Graph_insertVertex (g, n1)
  • Graph_insertVertex (g, n2)
  • Graph_insertVertex (g, n3)
  • Graph_insertVertex (g, n4)
  • Graph_insertVertex (g, n5)
  • Graph_insertVertex (g, n6)

2
3
1
1
2
3
4
6
5
4
6
5
34
Client Code ContinuedStep 3 Insert Edges
  • Graph_insertEdge (g, n1, n2)
  • Graph_insertEdge (g, n2, n5)
  • Graph_insertEdge (g, n3, n5)
  • Graph_insertEdge (g, n3, n6)
  • Graph_insertEdge (g, n4, n1)
  • Graph_insertEdge (g, n4, n2)
  • Graph_insertEdge (g, n5, n4)
  • Graph_insertEdge (g, n6, n6)
  • // Done! -)

1
2
3
4
6
5
35
All in PictureAn Empty Graph
  • // Ill make use of this convention for colors
  • // graph, linkedList, data, vertex, edge

g
next
data
36
All in PictureAfter Inserting all Vertices
  • // Ill make use of this convention for colors
  • // graph, linkedList, data, vertex, edge

g
next
/\
data
1
6
5
2
3
4
data
next
/\
/\
/\
/\
/\
37
All in PictureAfter Inserting all Edges (Part)
  • // Ill make use of this convention for colors
  • // graph, linkedList, data, vertex, edge

g
next
/\
data
1
6
5
2
3
4
data
next
/\
/\
/\
/\
from
from
to
to
/\
/\
Write a Comment
User Comments (0)
About PowerShow.com