Title: Metal%20Ions%20in%20Biological%20Systems
 1F5351 
Metalloproteins reacting with oxygen 1. Why do 
aerobic organisms need metalloproteins? 2. 
Oxygen transport proteins  Oxygenases 2.1. 
Hemoglobin, Myoglobin  Cytochrome P450 2.2. 
Hemerythrin  Methane monooxygenase 2.3. 
Hemocyanin  Tyrosinase 3. Conclusion
Jirí Kozelka 13.11. 2014 kozelka.jiri_at_gmail.com 
 21. Why do aerobic organisms need metalloproteins?
Cells of aerobic organisms need oxygen. First, 
oxygen is needed to gain energy from food 
(respiration) and for other processes. Second, 
toxic organic substances are eliminated from the 
body by oxidation, whereupon OH-groups are 
attached to the molecule (this specific process 
is called hydroxylation, in mammals it occurs 
mainly in the liver). This renders the toxic 
molecule water-soluble and it can be eliminated 
(through the urine in mammals).
Cellular respiration C6H12O6  6 O2 ? 6 CO2  
6 H2O DG0  -674 kcal/mol 
Elimination of xenobiotics. Example 
hydroxalation of hexane by Cytochrome P450
minor
minor
major 
 3Use of oxygen by aerobic organisms is hampered by 
two problems
1. The solubility problem Water solubility of 
oxygen at 25oC and pressure  1 bar is at 40 mg/L 
water. This is not enough to guarantee the oxygen 
supply to mitochondria by mere diffusion. Cells 
of aerobic organisms use therefore oxygen 
transporters.
2. The kinetic problem Oxygen has two unpaired 
electrons in its ground state and forms therefore 
a triplet state. The overwhelming majority of 
organic molecules (such as glucose or n-hexane) 
have all electrons paired and occur therefore in 
the singlet state. The products of oxidation of 
organic molecules, CO2 and H2O, are also in 
singlet states. According to the so-called 
Wigner-rule, processes in which the spin-state 
changes are  spin-forbidden , that is, they 
have a large kinetic barrier. The solution of the 
problem is binding of O2 to a transition metal 
complex. In transition metal complexes, 
spin-state changes are less inhibited due to the 
spin-orbit coupling. The oxygen-bound metal 
complex can therefore transit from a triplet 
state to a singlet state, and then react with an 
organic substrate which has also a singlet 
ground-state. 
 4Molecular orbital level diagram for O2 3Sg- state 
 5Activation of O2 with the help of a transition 
metal complex Adduct formation from a 
pentacoordinated FeL52 complex and O2 
 6Vazebné a antivazebné molekulové orbitály tvorené 
atomovými orbitály 2p v molekule O2
s2p
p2ph
antivazebné
xz
p2pv
yz
p2ph
xz
vazebné
p2pv
yz
Index h  horizontální Index v vertikální
s2p 
 7Vazebné a antivazebné molekulové orbitály tvorící 
vazbu p v molekule O2 prostorové usporádání
p2ph
p2pv
antivazebné
vazebné
p2ph
O
p2pv
O 
 8Activation of O2 with the help of a transition 
metal complex Adduct formation from a 
pentacoordinated FeL52 complex and O2 
 9Splitting of d orbitals in an octahedral 
environment (6 equal ligands)
Cetral transition metal atom
Lone-pairs of ligands
6 ligands octahedral field
M 
 10Splitting of d orbitals in an tetragonal 
environment (5 equal ligands)
Cetral transition metal atom
Lone-pairs of ligands
6 ligands octahedral field
5 ligands octahedral field
xz
M 
 11Splitting of d orbitals in an tetragonal 
environment (5 equal ligands)
Cetral transition metal atom
Lone-pairs of ligands
6 ligands octahedral field
5 ligands octahedral field
x2-y2
z2
xz
M 
 12Splitting of d orbitals in an tetragonal 
environment (5 equal ligands)
Cetral transition metal atom
Lone-pairs of ligands
6 ligands octahedral field
5 ligands octahedral field
x2-y2
z2
xz
xy
xz
M 
 133O2  1L5Fe ? 3L5FeO2
spin-allowed n of unpaired electrons unchanged
(only the two unpaired valence electrons shown) 
 143O2  1L5Fe ? 3L5FeO2
spin-allowed n of unpaired electrons unchanged
One of the p orbitals of O2 overlaps with the 
dz2 orbital of Fe and forms a bond the other p 
orbital is non-bonding
(only the two unpaired valence electrons shown) 
 153O2  1L5Fe ? 3L5FeO2
spin-allowed n of unpaired electrons unchanged
One of the p orbitals of O2 overlaps with the 
dz2 orbital of Fe and forms a bond the other p 
orbital is non-bonding
spin inversion
process spin-forbidden but rendered possible by 
spin-orbit coupling
(only the two unpaired valence electrons shown) 
 16In transition metal complexes, spin-orbit 
coupling renders spin-forbidden transitions 
possible. Metal complexes can therefore activate 
(triplet) oxygen for reactions with (singlet) 
organic molecules.
 1Substrate
1MLn O2m 
MLnm  3O2
1Oxidation products
Metal-oxygen adducts can also be used as oxygen 
carriers!
2. Oxygen transport proteins  oxygenases 
 17Oxygen transport proteins O2 binding in active 
sites
Hemoglobin (vertebrates, some invertebrates)
Hemocyanin (molluscs, some arthropods)
Hemerythrin (some marine invertebrates)
Lippard Bioinorganic Chemistry, 1994 
 18O2 oxygen molecule O2- superoxide anion 
Aminokyselina histidin tvorící koordinativní 
vazbu k Fe proximální histidin. Toto je jediná 
kovalentní vazba mezi porfyrinem železa a 
proteinem. Ostatní síly jsou hydrofobní, mezi 
porfyrinovým cyklem a hydrofobními 
postranními retezci proteinu. 
 19(No Transcript) 
 20in vertebrates
2
2e-
Reduction of O2 to H2O Catalyzed by the 
enzyme Cytochrome-oxidase 
 212.1. Hemoglobin, Myoglobin  Cytochrome P450
153 amino acids
http//www.ul.ie/childsp/CinA/Issue64/TOC36_Haemo
globin.htm 
 22Vazba myoglobinu (Mb) na kyslík
Cvicení 1 definujte rovnovážnou konstantu pro 
zpetnou reakci (tzv. disociacní konstantu, Kd)
Cvicení 2 definujte saturaci vazebných míst, Y, 
definovanou rovnicí dole, pomocí Kd a O2 jako 
promenných. Nahradte ve vzorcích pro Kd a pro Y 
koncentraci O2 parciálním tlakem p(O2). 
 23Cvicení 3 Vypoctete krivku frakcní saturace 
kyslíku na myoglobinu. Disociacní konstanta 
komplexu MbO2 je, pri 37 C, pH  7 a p  760 
Torr, Kd  2.8 Torr.
p(O2) Torr Y  0.5 1 2 3 5 10 20 30 40 50 6
0 70 80 90
Cvicení 4 Jaký význam má smernice saturacní 
krivky v bode p(O2)  0? Znázornete graficky 
závislost dY/dp(O2) na p(O2) 
 24(No Transcript) 
 25- Cooperativity of oxygen binding by the 4 subunits 
 of hemoglobin
- In deoxygenated form, the 4 subunits stabilize 
 mutually the domed conformation.
- The oxygen affinity of unloaded hemoglobin is 
 smaller than that of individual
- subunits. Oxygen binding to one subunit of 
 hemoglobin favors the planar form
- at neighboring subunits ? fully loaded hemoglobin 
 has an affinity similar to that
- of an individual subunit.
http//www.chemistry.wustl.edu/edudev/LabTutorial
s/Hemoglobin/MetalComplexinBlood.html 
 26Effect of CO2 on oxygen afinity of hemoglobin 
Bohr-Effect In muscles, where metabolic 
activity produces CO2, amino groups of certains 
amino acids are transformed to carbamate
The liberated H protonates histidine residues
At subunit interfaces salt bridges are formed
These salt bridges favor the domed conformation ? 
favor O2 release ? CO2 favors release of O2 which 
is then taken up by myoglobin 
 27In bronchi Low CO2 concentration favors planar 
conformation ? favors O2 binding
In muscles High CO2 concentration favors domed 
conformation ? favors O2 release
http//www.chemistry.wustl.edu/edudev/LabTutorial
s/Hemoglobin/MetalComplexinBlood.html 
 28Fe(II)-O2, Fe(III)-O2-, or Fe(IV)-O22-?
What experimental data can be used to determine 
whether oxygen in oxyhemoglobin resembles more 
to Fe(III)-O2- or to Fe(II)-O2? 
 29Stretching frequencies and bond lengths in 
dioxygen species
Species nO-O cm-1 d O-O A O2 1905 1.12 
 O2 1580 1.21 O2- 1097 1.33 O22- 
802 1.49 Mb-O2 1105 1.22 
M-O2- 1100-1150 1.24-1.31 M- O22- 
800-900 1.35-1.50 
 30F5351 
Metalloproteins reacting with oxygen 1. Why do 
aerobic organisms need metalloproteins? 2. 
Oxygen transport proteins  Oxygenases 2.1. 
Hemoglobin, Myoglobin  Cytochrome P450 2.2. 
Hemerythrin  Methane monooxygenase 2.3. 
Hemocyanin  Tyrosinase 3. Conclusion
Jirí Kozelka 13.11. 2014 kozelka.jiri_at_gmail.com 
 31Hemoproteins Axial Ligands and Functions
From Cécile Claude, Enzyme Models of 
Chloroperoxidase and Catalase, Inaugural 
Dissertation, Universität Basel, 2001 
 32Modification of the FeII/FeIII redox potential by 
the protein environment
Hemoprotein proximal ligand Em for FeII/FeIII 
(mV) FeIII/FeII (aq.) FeIII/FeII - 
 770 Human hemoglobin 
FeIII/FeII His 150 Microperoxidase11-CO 
FeIII/FeII His 100 Chloroperoxidase 
FeIII/FeII Cys- -150 NO synthase neuronal 
FeIII/FeII Cys- -250 Horse-radish peroxidase 
FeIII/FeII His -280 Cytochrome P450 2C5 
FeIII/FeII Cys- -330 Catalase FeIII/FeII 
 Tyr- -460 Source C. Capeillere-Blandin, D. 
Matthieu  D. Mansuy, Biochem. J. 2005, 392, 
583-587
Different metalloproteins need different redox 
potential for their function. Cytochrome P450 
needs to access the unusual oxidation state Fe(V) 
to be able to oxidize even unreactive substrates. 
Therefore, it uses the negatively charged 
cysteine ligand which donates electrons to Fe and 
stabilizes the high oxidation state. One of 
strategies that proteins employ to modify the 
redox potential is using different proximal 
ligands. 
 33Examples of Cytochrome P450 substrates
- Hydroxylation at 
- aliphatic carbons
- -aromatic carbons 
- double bonds
steroid hormone 
local anesthetic 
-heteroatoms
carcinogen from fungi 
antibiotic 
Alkaloid from Taxus brevifolia, potent 
anti-cancer drug 
 34Cytochrome P450cam (Campher-5-monooxygenase 
pdb-code 1T86)
access for substrate and O2  
 35- Hlavní dva rozdíly mezi hemoproteiny myoglobin a 
 cytochrom P450, duležité pro jejich ruzné funkce
- Prístupový kanál vedoucí ke kofaktoru (hemu) je u 
 myoglobinu velmi úzký, nedovoluje prístup vetším
 molekulám než O2. U cytochromu P450 je kanál
 širší a v blízkosti kofaktoru obsahuje místo s
 vysokou afinitou pro specifické substráty.
- Distální cystein a okolí kofaktoru snižuje u 
 cytochromu P450 oxidacne-redukcní potenciál Fe,
 takže tento metaloprotein muže fungovat jako
 oxygenáza a Fe v katalytickém cyklu muže
 krátkodobe existovat v oxidacním stupni Fe(V).
 Tento velmi reaktivní prechodný stav je schopen
 hydroxylovat i pomerne nereaktivní alifatické
 atomy uhlíku.
36F5351 
Metalloproteins reacting with oxygen 1. Why do 
aerobic organisms need metalloproteins? 2. 
Oxygen transport proteins  Oxygenases 2.1. 
Hemoglobin, Myoglobin  Cytochrome P450 2.2. 
Hemerythrin  Methane monooxygenase 2.3. 
Hemocyanin  Tyrosinase 3. Conclusion
Jirí Kozelka 13.11. 2014 kozelka.jiri_at_gmail.com 
 37http//notes.chem.usyd.edu.au/course/codd/CHEM3105
/Metalloproteins3.pdf 
 38(No Transcript) 
 39Crystal structure of hemerytrhin in unloaded 
state (pdb-code 1HMD)
Dinuclear iron active site fixed by a four-helix 
bundle 
 40Amino acids/subunit 153 113 
 628  
 41Sipuncula
Priapulida
Brachiopoda
Hemerythrin je metaloprotein transportující 
kyslík u nekterých bezobratlých
Magelona papillicornis 
 42Active sites of the reduced forms of Hemerythrin, 
Ribonucleotide Reductase R2 protein, the 
hydroxylase component of Methane Monooxygenase, 
and D9 desaturase 
 43Catalytic Cycle of soluble Methane Monooxygenase 
(sMMO)
Kopp  Lippard, Current Op. Chem. Biol. 2002, 568 
 44F5351 
Metalloproteins reacting with oxygen 1. Why do 
aerobic organisms need metalloproteins? 2. 
Oxygen transport proteins  Oxygenases 2.1. 
Hemoglobin, Myoglobin  Cytochrome P450 2.2. 
Hemerythrin  Methane monooxygenase 2.3. 
Hemocyanin  Tyrosinase 3. Conclusion
Jirí Kozelka 13.11. 2014 kozelka.jiri_at_gmail.com 
 45Amino acids/subunit 153 113 
628  
 46Hemocyanin je metaloprotein transportující kyslík 
u vetšiny mekkýšu a u nekterých korýšu
Panulirus interruptus
Octopus dofleini
Megathura crenulata
Linulus polyphemus 
 47(No Transcript) 
 48- Hemocyanin History 
-  Leon Federicq Sur lhemocyanine, substance 
 nouvelle
-  de sang de Poulpe (Octopus vulgaris) 
-  (Compt. Rend. Acad. Sci. 87, 996-998) 
-  Discovery 
-  M. Henze Zur Kenntniss des Haemocyanins 
-  Z. Physiol. Chem. 33, 370 
-  Hemocyanin contains copper 
-  W. A. Rawlinson, Australian J. Exp. Biol. Med. 
 Sci. 18,
-  131 
-  Oxy-hemocyanin is diamagnetic
49Známé a hypotetické () komplexy medi s jednotkou 
O2 
http//webdoc.sub.gwdg.de/diss/2003/ackermann/acke
rmann.pdf 
 50On the search for functional hemocyanin model 
compounds
Karlin et al., JACS 1988, 110, 36903692 
 51The first model complex showing reversible O2 
binding by a dicopper unit 
However, this complex differs from 
oxy-Hc Cu-CuÅ ?(O-O)cm-1 UV-VIS 1 4.36 
 834 440(2000) 
525(11500) 
 590(7600) 
1035(160) Oxy-Hc 3.5-3.7 744-752 
340(20000) 580(100)
1
Karlin et al., J. Am. Chem. Soc. 1988, 110, 
3690-3692  
 52Model complex showing reversible O2 binding and 
similar features to Hc
Kitajima et al., J. Am. Chem. Soc. 1989, 111, 
8975-8976
Cu-CuÅ ?(O-O)cm-1 UV-VIS 3.56 
741 349(21000) 551(790) 
3.5-3.7 744-752 340(20000) 
 580(100)
2
2
Oxy-Hc 
 53Functional hemocyanin models
(tmpa)2Cu2O22
CuHB(3,5-iPr2pz)32(O2)
Kitajima et al., JACS 1989, 111, 8975-8976
Karlin et al., JACS 1988, 110, 36903692 
 54UV-Vis absorption spectra of the oxy forms of 
hemocyanin and tyrosinase 
ps?d
pv?d
d?d  
 555-9 years later (1994, 1998) Active sites in 
hemocyanins determined by X-ray crystallography
Magnus et al.,Proteins Struct. Funct. Gen.1994
Cuff et al.,J.Mol.Biol.1998
Limulus polyphemus
Octopus dofleini 
 56An earlier model for hemocyanin...
turned out to be a model for the enzyme 
tyrosinase!
Karlin et al., JACS 1984, 106, 2121-2128 
 57L-DOPAquinone
Syntéza melaninu z tyrosinu katalyzovaná enzymem 
tyrosináza 
 58http//pollux.chem.umn.edu/kinsinge/new_homepage/
research/gss_presentation_3/sld019.htm 
Slide 6 of 21  
 59Tyrosinase versus Hemocyanin
The coupled binuclear copper sites in tyrosinase 
and hemocyanin are very similar. Why is then 
tyrosinase capable of reacting with substrates 
while hemocyanin is not? Solomon (Angew. Chem. 
Int. Ed. Engl. 2001, 40, 4570-450) Difference in 
accessibility of the active site Rates of 
peroxide displacement by azide (measured using UV 
absorption) at 4C Hemocyanins k  0.04 
h-1 Tyrosinase k  0.95 h-1  
 60Hypothesis, 1980
Solomon et al., JACS 1980, 102, 7339-7344, 
p.7343 Angew. Chem. Int. Ed. 2001, 40, 4570-4590
Proof, 1998 (J. Biol. Chem. 273, 25889-25892) 
 61Hemocyanine active site
Phe49 blocks access to active site 
When the N-terminal fragment including Phe49 is 
removed, tarantula hemocyanine shows tyrosinase 
activity
 From X-ray structure of L.polyphemus Hc., 
Magnus et al., Proteins Struct. Funct.Gen.19, 
302-309 
 62- Conclusions 
- In many cases, metalloproteins use the same or 
 similar active site
- for different purposes. 
- The strategies to confer a particular activity to 
 a given site include
-  Allowing/disallowing access of substrates to the 
 active site
-  (including the dynamics of diffusion of 
 substrate/product)
- Modifying the electrostatic potential by mutating 
 the amino acids
-  coordinated to the metal or surrounding the 
 binding pocket
- Architecture of the binding pocket defines 
 substrate selectivity
-  and affects energy of transition states?governs 
 reaction outcome