Title: ????
1????µ?t??? ?????s?
2?? e??a? ? ????µ?t??? ?????s?
- ???a? ?p?st?µ?
- ?s???e?ta? µe µe??d??? ep???s?? µa??µat????
p??ß??µ?t?? µe ???s? a???µ?t???? p???e?? (µe ?/?)
?a??? ?a? µe t?? a????s? t?? sfa?µ?t?? st??
p??s????s? t?? ??se??. - ???a? ?????
- ?f??? st?? ep????? e?e???? t?? µe??d?? p?? e??a?
p?? ?at?????? ??a t?? ep???s? e???
s???e???µ???? p??ß??µat??. - ?pa?te? a??pt??? de???t?t?? ?a? d?a?s??s??.
3?a??de??µa ?p???s? G?aµµ???? S?st?µat??
???s?se?? (1)
?
4?a??de??µa ?p???s? G?aµµ???? S?st?µat??
???s?se?? (2)
- ????d??
- ??p?? t?? Cramer (?)
- xA-1b (?2)
- ?µese? µ???d?? Gauss (?)
- ?p??
- ?e µe???? ?d???s?
- ?e ????? ?d???s?
- ?pa?a??pt???? µ???d??
- Jacobi
- Gauss-Seidel
- ?.?.
5?a??de??µa ?p???s? G?aµµ???? S?st?µat??
???s?se?? (3)
- ???t???a ep?????? µe??d??
- Ge????
- ????p????t?ta (?p?????st???, µ??µ??, ???p???s??)
- ?a??t?ta s?????s?? (??a epa?a??pt???? µe??d???)
- ????ße?a
- ???e?t???t?ta se a???µ?t??? sf??µata
(a?apa??stas?? ded?µ???? ?a? p???e??) - ??a?t?µe?a ap? t? s???e???µ??? p??ß??µa
- ?at?stas? t?? p??a?a t?? s?st?µat??
- ?????? µ?de????? st???e??? t?? p??a?a
- ??ast?se?? t?? p??ß??µat??
- ????? s?µµet??e? st?? p??a?a, ?.?.
6?a??de??µa ?p???s? G?aµµ???? S?st?µat??
???s?se?? (4)
- ?.?. ?p???s? t?? s?st?µat??
- µe 4 s?µa?t??? ??f?a
- ????ß?? ??s? (µe 4 ??f?a)
- ?p?? µ???d?? Gauss
- ????d?? Gauss µe µe???? ?d???s?
7?e??e??µe?a
- ????µ?t??? t?? ?p?????st?
- ???s????s? ?a? sf??µata
- S?st?µata ??aµµ???? e??s?se??
- ?d??t?µ?? ?a? ?d??d?a??sµata
- ?a?eµß???
- ?p???s? µ? ??aµµ???? e??s?se??
- ????µ?t??? pa?a????s? ?a? ????????s?
- ?fa?µ???? se C / Mathematica
8S?????µµata
- G. S. ?apa?e?????? ?a? ?. G. ?s?t???a?,
????µ?t??? ?????s? (µe efa?µ???? se Matlab ?a?
Mathematica), 3? ??d?s?, ??d?se?? S?µe??, ????a
2004. - ?. ?. F?a??????, ????d?? ????µ?t???? ?????s??,
??µ?? ? Te???a ?a? ?fa?µ???? ?a? ? Mathematica
?a? ?? efa?µ???? t??, ??d?se?? ?f?? ????a??d?,
Tessa?????? 2005. - ?. ??µ?t???d?? ?a? ?. ?????a?, ?fa?µ?sµ???
????µ?t??? ?????s?, 2? ??d?s?, ??d?se?? ????
?e?????????, ????a 2008. - G. S. S?f?a??? ?a? ?. T. ????p?????, ????µ?t???
?????s?, ??d?se?? ?. Staµ?????, ????a 2005. - ?. ?. ??a??t??, ????µ?t??? ?????s?, ??d?se??
???????? G??µµata, ????a 2002. - S?µe??se?? Mathematica.
9??ß?????af?a
- S. ??a?a???, Mathematica ?a? ?fa?µ????, ?a?/???
??d?se?? ???t??, 2001. - G. S. ?apa?e??????, ?. G. ?s?t???a?, ?a? ?. T.
Faµ????, S??????? ?a??µat??? ????sµ??? Matlab
Mathematica, ??d?se?? S?µe??, ????a 2004. - E. Don, Mathematica, ??d?se?? ??e?d????µ??, 2005.
- R. L. Burden and J. Douglas Faires, Numerical
Analysis, 6th ed., Brooks/Cole, 1997 (d?a??s?µ?
st? ß?ß???????). - A. Ralston and P. Rabinowitz, A First Course in
Numerical Analysis, 2nd ed., Dover, 1978.
10???s?µe? ??e????se??
- ?st?se??da µa??µat?? http//www.unipi.gr/faculty/
kofidis/teaching.htm - ??sa???? st? Mathematica (S?µe??se??)
- http//www.unipi.gr/faculty/mbouts/sim/Intro_to_M
athematica08.pdf
11???tas? - ?a?µ?????s?
- ???as?a (at?µ???) ??a t? sp?t?
- G?apt? e??tas?
- ?e????? ßa?µ??
- max(ßa?µ?? ??apt??,
- 0.3ßa?µ?? e??as?a?0.7ßa?µ?? ??apt??)
12???s????s? ?a? Sf??µata (1)
- ???? pepe?asµ???? µe?????? µ??µ??, ? a?apa??stas?
a???µ?? st?? ?/? ?a? ?? p???e?? µ a?t??? (µp??e?
?a) e?????? a?a???ße?e?. - ??? a?t?? ep??e????? t?? a???ße?a µe t?? ?p??a
?p??????eta? ? ??s? e??? p??ß??µat?? µe ??p??a
a???µ?t??? µ???d?
13???s????s? ?a? Sf??µata (2)
- ?a??de??µa
- ?? e??a? ?? p??se???se?? t?? a???µ??
, µe s?et??? sf??µata - p??? e??a? t? s?et??? sf??µa st?? p??s????s? t??
????µ???? t???, - (?p??t?s? a?
a??et? µ????.)
14S?st?µata G?aµµ???? ???s?se?? (1)
- ?p?????sµ?? t?? t?µ?? t?? n a???st?? x st?
s?st?µa t?? n e??s?se?? Axb, µe d?sµ??a t?? nxn
p??a?a A ?a? t? nx1 d????sµa b.
15S?st?µata G?aµµ???? ???s?se?? (2)
- ????d?? apa???f?? Gauss
- ???????p???s? t?? p??a?a t?? s?st?µat??
- ?p???s? t?? ?s?d??aµ?? t????????? s?st?µat?? µe
p?s? a?t??at?stas?
?
x
b
16S?st?µata G?aµµ???? ???s?se?? (3)
- ?fa?µ????
- ?p???s? p????? s?st?µ?t?? µe t?? ?d?? p??a?a
- ?p?????sµ?? a?t?st??f?? p??a?a
- ?p?????sµ?? ??????sa? p??a?a
- ?a?a???t?p???s? p??a?a se ??? ?a? ??t?
t?????????? pa?????te?
17S?st?µata G?aµµ???? ???s?se?? (4)
- ?p?????sµ?? ?d??t?µ?? (?) ?a? ?d??d?a??sµ?t?? (x)
e??? p??a?a A ?x?x - ????d?? t?? d???µe?? (power method) ??a
?p?????sµ? t?? µ???st?? (?at ap???t? t?µ?)
?d??t?µ?? ?a? a?t?st????? ?d??d?a??sµat?? - ??????p???s? x(0)
- ?pa?????? (k0,1,2,)
- x(k1)A x(k)
- ?a??????p???s? t?? x(k1)
18S?st?µata G?aµµ???? ???s?se?? (5)
- ?fa?µ??? ?????s? se p??te???se? s???st?se?
(Principal Component Analysis (PCA))
19?a?eµß??? (Interpolation) (1)
- ?? ????????µe t?? t?µ?? µ?a? (s??e????)
s????t?s?? f µ??? sta k1 s?µe?a x0 , x1 , , xk
, p?? µp????µe ?a p??se???s??µe t?? t?µ?? t?? se
???a e?d??µesa s?µe?a - ???????µ??? p??s????s? ???se??????µe t?? f µ
??a p??????µ? k ßa?µ??, Pk(x) f(x), ?a?
?p????????µe t?? t?µ?? a?t?? t?? p??????µ?? a?t?
t?? f.
20?a?eµß??? (Interpolation) (2)
- ?a??de??µa
- ???????µ? Taylor 2?? ßa?µ?? ???? ap? t? x0
- ???????µ? Newton 2?? ßa?µ??
21?a?eµß??? (Interpolation) (3)
22?p???s? ??-G?aµµ???? ???s?se?? (1)
- ??sµ???? µ?a? µ?-??aµµ???? s????t?s?? f, p??e?
e??a? ?? ???e? t?? e??s?s?? f(x)0 - ?????t??? p????f???a
- ???st?µa a,ß st? ?p??? ?e?ta? ? ??t??µe?? ???a,
?. - ????µ?? ???t? st?? ?p???? p?ste?eta? ?t?
ß??s?eta? ? ???a.
23?p???s? ??-G?aµµ???? ???s?se?? (2)
- Ge???? µe??d?????a ?pa?a??pt??? ße?t??s? t??
p???t?ta? t?? d?a??s?µ?? e?t?µ?s?? ??a t? ???a,
?. - ?????? e?t?µ?s? ?0
- ?pa?????? (k0,1,2,...)
- ?k1F (?k)
- ??? ?t?? t? ?k1 ?a e??a? a??et? ???t? st?
?k, - ?p?? F e??a? ? µ???d?? ße?t??s?? t?? e?t?µ?s??.
24?p???s? ??-G?aµµ???? ???s?se?? (3)
25?p???s? ??-G?aµµ???? ???s?se?? (4)
26????µ?t??? ?a?a????s? (1)
- ?? ??a µ?a s????t?s? f ????????µe µ??? t?? t?µ??
t?? se k1 ?sap????ta (?at? h) s?µe?a x0, x1 , ,
xk , p?? µp????µe ?a p??se???s??µe t?? t?µ?? t??
pa?a????? t?? s a?t? ta s?µe?a ?a? se e?d??µes?
t???
27????µ?t??? ?a?a????s? (2)
- Ge???? µe??d?????a ???se??????µe t?? f µ ??a
p??????µ? ?a? ?p????????µe t?? t?µ?? t??
pa?a????? a?t?? t?? p??????µ?? a?t? t?? pa?a?????
t?? f. - ?.?. ? pa??????? st? ?e?t???? s?µe?? t????
s?µe??? ?p??????eta? ??
28????µ?t??? ?a?a????s? (3)
29????µ?t??? ????????s? (1)
- ?e ta ?d?a ded?µ??a, p?? µp????µe ?a
p??se???s??µe t? ????????µa t?? f ap? x0 ??? xk - Ge???? µe??d?????a ????????s? t?? p??????µ?? p??
pa?eµß???e? t?? f sta s?µe?a a?t?.
30????µ?t??? ????????s? (2)
- ?a???a? ??ape???? (S???et??)
31????µ?t??? ????????s? (3)
32?e????? ap? t??? d?µ????????