Title: Diapositive 1
1Modelling Transport Phenomena during Spreading
and Solidification of Droplets in Plasma
Projection
Dominique GOBIN CNRS France
NGU Seminar
Nova Gorica (November 5, 2009)
2Contents
- Motivation
- Equations
- Isothermal spreading
- Spreading with solidification
- Perspective
3Building up a coating
The functional properties of the coating depend
on the cohesion and adhesion of the
splats
4(No Transcript)
5Characteristic times Spatial scales
Time scales Spatial scales
Splat Formation (spreading solidification) 10 µs 0.5 à 5 µm
Time interval between 2 impacts at the same place 10 à 100 µs
Layer Formation A few ms A few 10 µm
Time interval between two passes of the torch A few s
6Modelling issues
Modelling the plasma
Spreading and solidification of droplets on a
cold substrate
In-flight melting (vaporization) of particles
Building-up the coating
Define and control the process parameters
7Droplet spreading and solidification
Impacting Particle
T0 gt Tm V0 ? 100 m/s 20 lt d0 lt 50 µm
Tsplat and dsplat time evolution
Ts
Substrate
82. Equations
9Modelling spreading
Pure fluid dynamics problem. The substrate is a
boundary condition
Mass Conservation
Momentum Conservation
10Modelling spreading
Non-dimensionalizing variables (choosing
reference values d0, V0, etc) yields the
dimensionless parameters of the problem
Mass Conservation
Momentum Conservation
11Modelling spreading with solidification
Coupling the equations of fluid dynamics with
the heat transfer equations
Mass Conservation
Momentum Conservation
Energy Conservation - in the splat -
in the substrate
12Modelling spreading with solidification
During solidification two phases (solide and
fluid) are present. A phase function is defined
1 if liquid 0 if solid
Mass Conservation
Momentum Conservation
13Modelling spreading with solidification
Heat transfer and enthalpy formulation
Energy Conservation
14Conservation equations
Mass Conservation
Momentum Conservation
Energy Conservation
1 liquid 0 solid
Liquid Fraction
15Physical parameters of the problem
Parameters of the particles at impact Nature
Size Velocity
Temperature and state of
melting Parameters of the substrate
Nature Rugosity Initial temperature Surface
chemistry (wettability)
16Spreading and solidification of a splat
1. Operation parameters
2. Adjustable parameters
Splat
Substrate
- Contact thermal resistance
17Numerical tool
Simulent-Drop a software developed at the
University of Toronto (J. Mostaghimi et al.)
Main hypotheses
- Newtonian fluid
- Constant properties (surface tension, contact
resistance, conductivities, viscosity, ) - Equilibrium solidification
18Numerical tool main features
- Finite difference method
- Fixed regular grid (Eulerian formulation)
- Boundary condition using dynamic contact angles
- Interface reconstruction VoF method
- 3-D Geometry (computational domain a quarter
of the domain)
Typical grid
Symmetry
Full domain
Computational domain
19Scales
Micrometric droplets (Conditions of plasma
projection)
Millimetric droplets (Free fall conditions)
Similitude ?
Re identiques We 10 à 100 fois plus grand
d
1 mm
gt 10 µm
Vimpact
1 m/s
gt 100 m/s
Characteristic times
ms
µs
- 19 -
203. Isothermal spreading
21Isothermal impact of a water droplet
Simulation F. Loghmari
Water droplet spreading d0 2,75 mm , V0 1.18
m/s on soft wax q (105,95) Rioboo et al.
(2001)
- 21 1 ²
22Simulation Experiments
Spreading factor d(t)/do
Reduced time t t Vo/ do
23Wettability effect
?a
Substrat
Forward dynamic contact angle
Backward angle effect (?a 105)
Forward angle effect (?r 95)
- 23 -
244. Spreading with solidification
25mm-size droplet simulation
Simulation Nabil Ferguen
Copper droplet on steel substrate d 3 mm V
4 m/s Ts 25C
26Impact velocity influence
Vp8 m/s
Vp4 m/s
Vp2 m/s
Time evolution of the spreading factor
- 26 -
- 26 -
27Impact velocity influence
Vp 8 m/s
Vp8 m/s
Vp4 m/s
Vp2 m/s
Vp 4 m/s
Time evolution of the spreading factor
Vp 2 m/s
- 27 -
- 27 -
28Contact thermal resistance
Non perfect contact between the drop and a rugous
substrate gt resistance to the heat flux
temperature discontinuity at the interface
CTR Model
- 28 -
- 28 -
29Influence of the contact thermal resistance
10-5 m²K.W-1
5.10-6 m²K.W-1
2.10-6 m²K.W-1
10-6 m²K.W-1
- 29 -
- 29 -
30High contact resistance
RTC 10-5 m²K.W-1
Simulation Nabil Ferguen
Copper droplet on steel substrate d 3 mm V
4 m/s Ts 400C
31Low contact resistance
RTC 10-6 m²K.W-1
Simulation Nabil Ferguen
Copper droplet on steel substrate d 3 mm V
4 m/s Ts 400C
32Influence of the initial substrate temperature
Ti Cr Cu
To 300 K
To 673 K
From Fukumoto et al. (1995)
33Splat formation
Morphological transition temperature Tt
Alumina on steel 304L
Splat Pre-heated substrate Tsubgt Tt Better
adhesion (? 30 MPa)
Splash Cold substrate Tsublt Tt Poor
adhesion of the coating (? 4 MPa)
34Influence of the substrate temperature
Vp 4 m/s dp 2 mm T0 1100 C, Tf
1080 C
Re 23900 , We 191
Ts 1084 C
Ts 800C
Ts 400C
Ts 25C
Pre-heating of the substrate higher final splat
diameter
35Transition Temperature ?
- Desorption of adsorbates and condensates
- Modification of wettability of the substrate
- Modification the thermal resistance
- Possible evolution of the surface state of the
substrate
365. Further developments
37Non equilibrium Solidification
- Basic hypothesis solidification at equilibrium
- Most models do not take into account
undercooling, nucleation and growth
problem of multi-scale
(micro macro) simulation - But in plasma projection, the cooling velocity
measured in the experiments reaches from 106 to
5.108 K/s - undercooling about 0,1 to 0,2 Tm.
- ? Include rapid solidification
38Experiments on mm-size droplets
Film S. Goutier M. Vardelle
Alumina droplet on steel substrate d 5 mm V
10 m/s Ts 400C
39Thank you for your attention
- Special Thanks to
- Nabil Ferguen SPCTS Laboratory
- Simon Goutier SPCTS Laboratory
- Fahmi Loghmari FAST Laboratory
-
40(No Transcript)
41Isothermal impact of a water droplet
Simulation F. Loghmari
Water droplet spreading d0 2,75mm , V0
1.18m/s on soft wax q (105,95) Rioboo et
al. (2001)
- 41 1 ²