Parameterization for Curve Interpolation - PowerPoint PPT Presentation

1 / 27
About This Presentation
Title:

Parameterization for Curve Interpolation

Description:

Topics in Multivariate Approximation and Interpolation Parameterization for Curve Interpolation Michael S. Floater and Tatiana Surazhsky Speaker: CAI Hong-jie – PowerPoint PPT presentation

Number of Views:218
Avg rating:3.0/5.0
Slides: 28
Provided by: chj9
Category:

less

Transcript and Presenter's Notes

Title: Parameterization for Curve Interpolation


1
Parameterization for Curve Interpolation
Topics in Multivariate Approximation and
Interpolation
  • Michael S. Floater and Tatiana Surazhsky

Speaker CAI Hong-jie Date Oct. 11, 2007
2
The First Author
  • Michael S. Floater
  • Main Posts
  • Professor of the University of Oslo
  • Editor of the journal Computer Aided
    Geometric Design
  • Research
  • Geometric modeling
  • Numerical analysis
  • Approximation theory

3
The Second Author
  • Tatiana Surazhsky
  • Post
  • 3D Researcher of Samsung Electronics,
  • Samsung Telecom Research Israel
  • Research
  • Geometric modeling
  • Computer graphics

4
Outline
  • Background
  • Metric for approximation error
  • Approximation order
  • Cubic polynomial
  • Cubic spline
  • higher degree polynomial
  • Hermite interpolation

5
Background
  • Concept Parameterization for interpolation
  • Given
  • points P0,P1,,Pn in Rk, k 2 or 3
  • To find
  • t0ltt1ltlttn and parametric curve P(t)
  • such that P(ti)Pi, i0,,n.

6
Background
  • Selection of parametric curve
  • Polynomial curve
  • Spline curve
  • Selection of knot vector
  • To determine diti1-ti, i0,1,,n-1.

7
Choices for di
  • Uniform di 1
  • Chordal di Pi1-Pi
  • J. H. Ahlberg, E. N. Nilson, and J. L. Walsh
  • The theory of splines and their
    applications, 1967
  • M. P. Epstein
  • On the influence of parametrization in
    parametric interpolation, 1976
  • Centripetal di Pi1-Pi1/2
  • E. T. Y. Lee
  • Choosing nodes in parametric curve
    interpolation, 1989
  • Affine invariant
  • T. A. Foley and G. M. Nielson
  • Knot selection for parametric spline
    interpolation, 1989

8
Comparison of Four Choices
Original Curve thin black Spline Curves thick
gray
9
Comparison of Three Choices
Original curve blue uniform green
Chordal black centripetal magenta
10
Comparison of Three Choices
Original curve blue uniform green
Chordal black centripetal magenta
11
Metric for Approximation Error
  • Hausdorff distance
  • Let A,B be point sets in Rk (k2,3), define
  • where E is Euclidean distance, then
    Hausdorff distance between A and B is

12
Metric for Approximation Error
  • Illustration for Hausdorff distance
  • d(A,B)1
  • d(B,A)3
  • dH(A,B)3
  • Application of Hausdorff distance
  • Image matching

13
Hausdorff distance for curves
  • Definition
  • P0,P1,,Pn sampled from parametric curve
    fa,b? Rk, Pi f(si), as0lts1ltlt snb.
    Interpolate Pi by P(t)t0,tn? Rk, then the
    distance between them is

14
Metric for Approximation Error
  • Parametric distance
  • where ? t0,tn ?s0,sn is strictly
    increasing, C1 functions such that ?(t0)s0,
    ?(tn)sn.
  • T. Lyche and K. MØrken, A metric for
    parametric approximation, Curves and Surfaces,
    1994

15
Approximation Order
  • Why not distances
  • Hard to calculate
  • Even bounds are difficult to achieve
  • Approximation order instead
  • where h Length(f s0,sn ) sn-s0.
  • Larger approximation order m, better
    interpolation

16
Cubic Polynomial Interpolation
  • Theorem
  • Given f?C4a,b, samples as0lts1lts2lts3 b, let
    t00, ti1- ti f(si1) - f(si)(i0,1,2), and
    P(t)t0,t3 ? Rk be cubic polynomial such that
  • P(ti)f(si),i0,1,2,3.
  • Then dP(fs0,s3, P) O(h4), h ?0, where
    hs3-s0.

17
Cubic Polynomial Interpolation
  • Lemma 1
  • If f?C2a,b, then
  • Tip for proof let u(sisi1)/2, then

18
Cubic Polynomial Interpolation
  • Lemma 2
  • If ?t0, t3 ?R cubic polynomial such that
    ?(ti)si, i 0,1,2,3, then
  • Tip for proof Newton interpolation formula

19
Extension to Cubic Spline
  • Theorem
  • Given f?C4a,b, samples as0ltltsn b, let
    t00, ti1- ti f(si1) - f(si), 0 iltn, and
    s(t)t0,tn ? Rk be the cubic spline curve such
    that
  • Then dP(fs0,sn, s) O(h4), h ?0, where

20
Parameterization Improvement for higher degree
  • Case polynomial degree n2,3
  • Uniform O(h2)
  • Chordal O(hn1)
  • Case polynomial degree n 4,5
  • Uniform O(h2)
  • Chordal O(h4)
  • Improvement O(hn1)
  • diLength(chordal cubic polynomial between
    Pi,Pi1)

21
Hermite Interpolation
  • Cubic two-point
  • Given f?C4a,b, t1- t0 f(s1) - f(s0), and let
    P(t)t0,t1 ? Rk be cubic polynomial such that
  • Then dP(fs0,s1, P) O(h4), as h ?0.

22
Hermite Interpolation
  • Quintic two-point
  • Given f?C6a,b, let u0, u1 be chordal
    parametric knot vector, and t0, t1 be improved
    knot vector, P(t)t0,t1 ? Rk be quintic
    polynomial such that
  • Then dP(fs0,s1, P) O(h6), as h ?0.

23
Numerical Examples
Original curve
24
Numerical Examples
25
Comparison with Cubic Spline
  1. Samples from a glass cup
  2. Chordal C2 cubic spline curve
  3. Improved C2 quintic Hermite spline curve

26
Reference
  • M.S. Floater ,T. Surazhsky. Parameterization for
    curve interpolation. Topics in Multivariate
    Approximation and Interpolation, 2007.
  • M.S. Floater. Arc Length Estimation and The
    Convergence of Polynomial Curve Interpolation.
    Numerical Mathematics, to appear.
  • T. Surazhsky, V. Surazhsky. Sampling Planar
    Curves Using Curvature-Based Shape Analysis.
    Mathematical Methods for Curves and Surfaces,
    Tromsø 2004.
  • ???,???,???. ????,?4?,2003.

27
Thanks!QA
Write a Comment
User Comments (0)
About PowerShow.com