Continuation of global bifurcations using collocation technique - PowerPoint PPT Presentation

About This Presentation
Title:

Continuation of global bifurcations using collocation technique

Description:

Title: PowerPoint Presentation Last modified by: user1 Created Date: 1/1/1601 12:00:00 AM Document presentation format: On-screen Show Other titles – PowerPoint PPT presentation

Number of Views:124
Avg rating:3.0/5.0
Slides: 38
Provided by: vunl
Category:

less

Transcript and Presenter's Notes

Title: Continuation of global bifurcations using collocation technique


1
Continuation of global bifurcations using
collocation technique
In cooperation with Bob Kooi, Yuri Kuznetsov
(UU), Bas Kooijman
George van Voorn 3th March 2006 Schoorl
2
Overview
  • Recent biological experimental examples of
  • Local bifurcations (Hopf)
  • Chaotic behaviour
  • Role of global bifurcations (globifs)
  • Techniques finding and continuation global
    connecting orbits
  • Find global bifurcations

3
Bifurcation analysis
  • Tool for analysis of non-linear (biological)
    systems bifurcation analysis
  • By default analysis of stability of equilibria
    (X(t), t ? 8) under parameter variation
  • Bifurcation point critical parameter value
    where switch of stability takes place
  • Local linearisation around point

4
Biological application
  • Biologically local bifurcation analysis allows
    one to distinguish between
  • Stable (X 0 or X gt 0)
  • Periodic (unstable X )
  • Chaotic
  • Switches at bifurcation points

5
Hopf bifurcation
  • Switch stability of equilibrium at a aH
  • But stable cycle ? persistence of species

Biomass
time
a lt aH
a gt aH
6
Hopf in experiments
Fussman, G.F. et al. 2000. Crossing the Hopf
Bifurcation in a Live Predator-Prey System.
Science 290 1358 1360.
Chemostat predator-prey system
a Extinction food shortage b Coexistence at
equilibrium c Coexistence on stable limit
cycle d Extinction cycling
Measurement point
7
Chaotic behaviour
  • Chaotic behaviour no attracting equilibrium or
    stable periodic solution
  • Yet bounded orbits X(t)min, X(t)max
  • Sensitive dependence on initial conditions
  • Prevalence of species (not all cases!)

8
Experimental results
Dilution rate d (day -1)
Becks, L. et al. 2005. Experimental demonstration
of chaos in a microbial food web. Nature 435
1226 1229.
0.90
Chemostat predator-two-prey system
0.75
Brevundimonas
0.50
Pedobacter
Tetrahymena (predator)
0.45
Chaotic behaviour
9
Boundaries of chaos
Example Rozenzweig-MacArthur next-minimum map
Minima X3 cycles
10
Boundaries of chaos
Example Rozenzweig-MacArthur next-minimum map
Possible existence X3
No existence X3
11
Boundaries of chaos
  • Chaotic regions bounded
  • Birth of chaos e.g. period doubling
  • Flip bifurcation (manifold twisted)
  • Destruction boundaries ?
  • Unbounded orbits ?
  • No prevalence of species

12
Global bifurcations
  • Chaotic regions are cut off by global
    bifurcations (globifs)
  • Localisation globifs by finding orbits that
  • Connect the same saddle equilibrium or cycle
    (homoclinic)
  • Connect two different saddle cycles and/or
    equilibria (heteroclinic)

13
Global bifurcations
Example Rozenzweig-MacArthur next-minimum map
Minima homoclinic cycle-to-cycle
14
Global bifurcations
Example Rozenzweig-MacArthur next-minimum map
Minima heteroclinic point-to-cycle
15
Localising connecting orbits
  • Difficulties
  • Nearly impossible connection
  • Orbit must enter exactly on stable manifold
  • Infinite time
  • Numerical inaccuracy

16
Shooting method
  • Boer et al., Dieci Rebaza (2004)
  • Numerical integration (trial-and-error)
  • Piling up of error often fails
  • Very small integration step required

17
Shooting method
Example error shooting Rozenzweig-MacArthur
model Default integration step
X3
X1
X2
d1 0.26, d2 1.2510-2
18
Collocation technique
  • Doedel et al. (software AUTO)
  • Partitioning orbit, solve pieces exactly
  • More robust, larger integration step
  • Division of error over pieces

19
Collocation technique
  • Separate boundary value problems (BVPs) for
  • Limit cycles/equilibria
  • Eigenfunction ? linearised manifolds
  • Connection
  • Put together

20
Equilibrium BVP
v eigenvector ? eigenvalue fx Jacobian
matrix In practice computer program (Maple,
Mathematica) is used to find equilibrium
f(?,a) Continuation parameters Saddle
equilibrium, eigenvalues, eigenvectors
21
Limit cycle BVP
T period of cycle, parameter x(0) starting
point cycle x(1) end point cycle ? phase
22
Eigenfunction BVP
Wu
w(0)
T same period as cycle µ multiplier (FM) w
eigenvector ? phase Finds entry and exit points
of stable and unstable limit cycles
w(0) µ
23
Connection BVP
T1 period connection ? / 8 Truncated
(numerical)
Margin of error
e
?
24
Case 1 RM model
d1 0.26, d2 1.2510-2
X3
Saddle limit cycle
X2
X1
25
Case 1 RM model
X3
Wu
Unstable manifold
µu 1.5050
X2
X1
26
Case 1 RM model
X3
Stable manifold
Ws
µs 2.30710-3
X2
X1
27
Case 1 RM model
X3
Heteroclinic point-to-cycle connection
Ws
X2
X1
28
Case 2 Monod model
Xr 200, D 0.085
X3
Saddle limit cycle
X1
X2
29
Case 2 Monod model
X3
Wu
µs too small
X1
X2
30
Case 2 Monod model
X3
Heteroclinic point-to-cycle connection
X1
X2
31
Case 2 Monod model
X3
Homoclinic cycle-to-cycle connection
X1
X2
32
Case 2 Monod model
X3
Second saddle limit cycle
X1
X2
33
Case 2 Monod model
Wu
X3
X1
X2
34
Case 2 Monod model
X3
Homoclinic connection
X1
X2
35
Future work
  • Difficult to find starting points
  • Recalculate global homoclinic and heteroclinic
    bifurcations in models by M. Boer et al.
  • Find and continue globifs in other biological
    models (DEB, Kooijman)

36
Supported by
Thank you for your attention!
george.van.voorn_at_falw.vu.nl
Primary references Boer, M.P. and
Kooi, B.W. 1999. Homoclinic and heteroclinic
orbits to a cycle in a tri-trophic food chain. J.
Math. Biol. 39 19-38. Dieci, L. and Rebaza, J.
2004. Point-to-periodic and periodic-to-periodic
connections. BIT Numerical Mathematics 44 4162.
37
Case 1 RM model
  • Integration step 10-3 ? good approximation, but
  • Time consuming
  • Not robust

X3
X1
X2
Write a Comment
User Comments (0)
About PowerShow.com