Title: Continuation of global bifurcations using collocation technique
1Continuation of global bifurcations using
collocation technique
In cooperation with Bob Kooi, Yuri Kuznetsov
(UU), Bas Kooijman
George van Voorn 3th March 2006 Schoorl
2Overview
- Recent biological experimental examples of
- Local bifurcations (Hopf)
- Chaotic behaviour
- Role of global bifurcations (globifs)
- Techniques finding and continuation global
connecting orbits - Find global bifurcations
3Bifurcation analysis
- Tool for analysis of non-linear (biological)
systems bifurcation analysis - By default analysis of stability of equilibria
(X(t), t ? 8) under parameter variation - Bifurcation point critical parameter value
where switch of stability takes place - Local linearisation around point
4Biological application
- Biologically local bifurcation analysis allows
one to distinguish between - Stable (X 0 or X gt 0)
- Periodic (unstable X )
- Chaotic
- Switches at bifurcation points
5Hopf bifurcation
- Switch stability of equilibrium at a aH
- But stable cycle ? persistence of species
Biomass
time
a lt aH
a gt aH
6Hopf in experiments
Fussman, G.F. et al. 2000. Crossing the Hopf
Bifurcation in a Live Predator-Prey System.
Science 290 1358 1360.
Chemostat predator-prey system
a Extinction food shortage b Coexistence at
equilibrium c Coexistence on stable limit
cycle d Extinction cycling
Measurement point
7Chaotic behaviour
- Chaotic behaviour no attracting equilibrium or
stable periodic solution - Yet bounded orbits X(t)min, X(t)max
- Sensitive dependence on initial conditions
- Prevalence of species (not all cases!)
8Experimental results
Dilution rate d (day -1)
Becks, L. et al. 2005. Experimental demonstration
of chaos in a microbial food web. Nature 435
1226 1229.
0.90
Chemostat predator-two-prey system
0.75
Brevundimonas
0.50
Pedobacter
Tetrahymena (predator)
0.45
Chaotic behaviour
9Boundaries of chaos
Example Rozenzweig-MacArthur next-minimum map
Minima X3 cycles
10Boundaries of chaos
Example Rozenzweig-MacArthur next-minimum map
Possible existence X3
No existence X3
11Boundaries of chaos
- Chaotic regions bounded
- Birth of chaos e.g. period doubling
- Flip bifurcation (manifold twisted)
- Destruction boundaries ?
- Unbounded orbits ?
- No prevalence of species
12Global bifurcations
- Chaotic regions are cut off by global
bifurcations (globifs) - Localisation globifs by finding orbits that
- Connect the same saddle equilibrium or cycle
(homoclinic) - Connect two different saddle cycles and/or
equilibria (heteroclinic)
13Global bifurcations
Example Rozenzweig-MacArthur next-minimum map
Minima homoclinic cycle-to-cycle
14Global bifurcations
Example Rozenzweig-MacArthur next-minimum map
Minima heteroclinic point-to-cycle
15Localising connecting orbits
- Difficulties
- Nearly impossible connection
- Orbit must enter exactly on stable manifold
- Infinite time
- Numerical inaccuracy
16Shooting method
- Boer et al., Dieci Rebaza (2004)
- Numerical integration (trial-and-error)
- Piling up of error often fails
- Very small integration step required
17Shooting method
Example error shooting Rozenzweig-MacArthur
model Default integration step
X3
X1
X2
d1 0.26, d2 1.2510-2
18Collocation technique
- Doedel et al. (software AUTO)
- Partitioning orbit, solve pieces exactly
- More robust, larger integration step
- Division of error over pieces
19Collocation technique
- Separate boundary value problems (BVPs) for
- Limit cycles/equilibria
- Eigenfunction ? linearised manifolds
- Connection
- Put together
20Equilibrium BVP
v eigenvector ? eigenvalue fx Jacobian
matrix In practice computer program (Maple,
Mathematica) is used to find equilibrium
f(?,a) Continuation parameters Saddle
equilibrium, eigenvalues, eigenvectors
21Limit cycle BVP
T period of cycle, parameter x(0) starting
point cycle x(1) end point cycle ? phase
22Eigenfunction BVP
Wu
w(0)
T same period as cycle µ multiplier (FM) w
eigenvector ? phase Finds entry and exit points
of stable and unstable limit cycles
w(0) µ
23Connection BVP
T1 period connection ? / 8 Truncated
(numerical)
Margin of error
e
?
24Case 1 RM model
d1 0.26, d2 1.2510-2
X3
Saddle limit cycle
X2
X1
25Case 1 RM model
X3
Wu
Unstable manifold
µu 1.5050
X2
X1
26Case 1 RM model
X3
Stable manifold
Ws
µs 2.30710-3
X2
X1
27Case 1 RM model
X3
Heteroclinic point-to-cycle connection
Ws
X2
X1
28Case 2 Monod model
Xr 200, D 0.085
X3
Saddle limit cycle
X1
X2
29Case 2 Monod model
X3
Wu
µs too small
X1
X2
30Case 2 Monod model
X3
Heteroclinic point-to-cycle connection
X1
X2
31Case 2 Monod model
X3
Homoclinic cycle-to-cycle connection
X1
X2
32Case 2 Monod model
X3
Second saddle limit cycle
X1
X2
33Case 2 Monod model
Wu
X3
X1
X2
34Case 2 Monod model
X3
Homoclinic connection
X1
X2
35Future work
- Difficult to find starting points
- Recalculate global homoclinic and heteroclinic
bifurcations in models by M. Boer et al. - Find and continue globifs in other biological
models (DEB, Kooijman)
36Supported by
Thank you for your attention!
george.van.voorn_at_falw.vu.nl
Primary references Boer, M.P. and
Kooi, B.W. 1999. Homoclinic and heteroclinic
orbits to a cycle in a tri-trophic food chain. J.
Math. Biol. 39 19-38. Dieci, L. and Rebaza, J.
2004. Point-to-periodic and periodic-to-periodic
connections. BIT Numerical Mathematics 44 4162.
37Case 1 RM model
- Integration step 10-3 ? good approximation, but
- Time consuming
- Not robust
X3
X1
X2