Title: X-Raying%20the%20Hot%20Universe
1X-Ray Studies of Nucleosynthesis and Abundances
in Supernova Remnants John P. Hughes Rutgers
University
2Why X-rays?
- Lya lines of all species from C (0.368 keV) to Zn
(9.3 keV) - kT 106 K to 108 K from shocks in ejecta and
CSM/ISM
W49B
ASCA
S
Si
Ar
Ca
Fe
3X-ray Emission/Atomic Processes
Continuum emission thermal bremsstrahlung
Line emission
Abundance of element Z
Ionization fraction of ion i
4Abundance Determination Issues
- Thermodynamic State
- Nonequilibrium Ionization (NEI) (net105 cm-3 yr)
- T, n evolution with time/radius (e.g., Sedov)
- Other effects
- Heating/cooling in pure element ejecta
- Te/Tp
- Nonthermal particles (rates and excitation)
- Absolute abundances (e.g., Si/H, O/H, Fe/H)
- Rely on assumption of H/He-dominated continuum
- Relative abundances (e.g., Mg/Si, O/Fe)
- OK, if species have the same spatial distribution
5Ejecta Mass Determination Issues
- Volume estimation
- Clumping (reduces actual mass)
- Distance (MD5/2)
- Source of electrons
- Measure EM nenIV
- Solar abundance ne nH nFe/107.6-12
25000nFe - Pure Fe ne 20nFe
- Inferred Mpure Fe /Msolar 35
6Where do we find ejecta?
- Optical SNRs with high velocity oxygen-rich
features - Galactic Cas A, G292.01.8, Puppis A
- LMC/SMC N132D, E0540-69.3, E0102.2-72.2
- Other an unresolved SNR in NGC 4449
- Remnants of historical SNe
- e.g., SN1006, SN1572 (Tycho), SN1604
(Kepler) - Based on Fe II in absorption X-ray
spectra - Ejecta-dominated SNRs
- e.g., W49B, G352.7-0.1, G337.2-0.7,
G309.2-0.6 - Based on X-ray spectra (mostly ASCA)
- Nearly all remnants up to ages of at least
10,000 yrs!!! - N49, N63A, DEM71, N49B, and E0103-72.6
- Based on Chandra spectro-imaging
7Core Collapse Supernovae
- SN II, SN Ib/c (Zwicky Baade 1934)
- Massive stars that explode with (SN II) or w/out
(SN Ib/c) their H envelopes - Photodisintegration of Fe, plus electron capture
on nuclei, remove central P support - Core collapses, leading to NS or BH
- Core stiffens, rebounds and drives an outward
moving shock - Neutrinos or jets needed to produce explosion
- Mean Rate 1.3 SNU
8Nucleosynthesis in CC SNe
- Hydrostatic nucleosynthesis
- During hydrostatic evolution of star
- Builds up shells rich in H, He, C, O, and Si
- Amount of C, O, Ne, Mg ejected varies strongly
with progenitor mass - Explosive nucleosynthesis
- Some mechanism drives a shock wave with 1051 erg
through the Fe-core - Burning front Ts of 109 K cause explosive O-
and Si-burning - Only affects the central parts of the star
outer layers retain their pre-SN composition
9Explosive Nucleosynthesis
Process T (109 K) Main Products
Explosive complete Si-burning 5.0 Fe, He
Explosive incomplete Si-burning 4.0 Si, S, Fe, Ar, Ca
Explosive O-burning 3.3 O, Si, S, Ar, Ca
Explosive Ne/C-burning 1.2 O, Mg, Si, Ne
10Overturning Our View of Cas A
Hughes, Rakowski, Burrows, and Slane 2000, ApJL,
528, L109.
11Cas A - Doppler Imaging by XMM
- Similar velocity structures in different lines
- SE knots blueshifted
- N knots redshifted
- Tight correlation between Si and S velocities
- Fe
- Note velocity distribution in N
- Extends to more positive velocities than Si or S
Willingale et al 2002, AA, 381, 1039
12Cas A 3D Ejecta Model
Plane of the sky
Rotated
Red Si Ka Green S Ka Blue Fe Ka Circle Main
shock
Fe-rich ejecta lies outside Si/S-rich ejecta
13Oxygen-Rich SNR G292.01.8
Park et al 2001, ApJL, 564, L39
14Oxygen-Rich SNR G292.01.8
Ejecta Rich in O, Ne, and Mg, some Si O/Ne lt
1 No Si-rich or Fe-rich ejecta
15Oxygen-Rich SNR G292.01.8
Normal Composition, CSM Central bright bar an
axisymmetric stellar wind (Blondin et al
1996) Thin, circumferential filaments enclose
ejecta-dominated material red/blue supergiant
wind boundary
16Thermonuclear Supernovae
- SN Ia (Hoyle Fowler 1960)
- No hydrogen, a solar mass of 56Ni, some
intermediate mass elements (O, Mg, Si, S,) - Subsonic burning (deflagration) of approx. one
Chandrasekhar mass of degenerate C/O - C-O white dwarf accreting H/He-rich gas from a
companion - No compact remnant
- Mean rate 0.3 SNU
17Identifying Remnants of SN Ia
- Balmer-dominated SNRs (partially neutral ISM)
- Ejecta abundances (Si and Fe rich, poor in O and
Ne) - Remnant structure (uniform ISM, smoother
ejecta, little spectral variation)
Tycho
E0509-67.5
18SN Ia Spectra and Abundances
- Comparison to models
- O, Ne, Mg relatively low
- Si, S, Ar, Ca consistent
- Fe very low (lt0.1)
- Other spectral results
- Fe co-spatial with Si, but hotter and lower net
W7 Nomoto et al 1984, Thielemann et al
1993 WDD1 Iwamoto et al 1999 NEI fit Warren et
al 2003
19ISM Abundances of the LMC
- Using SNRs as a probe of the ISM
- 7 SNRs, ages from 2,000 yr to 20,000 yr
- Data from ASCA
- Spectra calculated for evolutionary models (Sedov
solution) - spatial variation
- temporal variation
20LMC SNRs Integrated Abundances
From fits to ASCA global X-ray spectra of 7
evolved LMC remnants
N49B
DEM L71
Hughes, Hayashi, Koyama 1998, ApJ, 505, 732
21LMC Metal Abundances
Species HHK98 Duf84 RD92
O 8.21(7) 8.43(8) 8.35(6)
Ne 7.55(8) 7.64(10) 7.61(5)
Mg 7.08(7) . . . 7.47(13)
Si 7.04(8) . . . 7.8
S 6.77(13) 6.85(11) 6.70(9)
Fe 7.01(11) . . . 7.23(14)
HHK95 ASCA X-ray SNRs Duf84 UV/Optical
spectra H II regions (Dufour 1984) RD92 F
supergiants (Mg, Si, Fe) (Russell Bessel 1989)
H II regions, SNRs (O, Ne, S) (Russell
Dopita 1990)
22DEM L71
- Middle-aged SNR
- 36 (8.7 pc) in radius
- 4,000 yrs old
- Rims LMC composition
- Core Fe/O gt 5 times solar
- Ejecta mass 1.5 Msun
SN Ia ejecta
Hughes, Ghavamian, Rakowski, Slane 2003, ApJ,
582, L95
23N49B
- Middle-aged SNR
- 80 (19 pc) in radius
- 5000-10,000 yrs old
- Bright and faint rims
- LMC composition
- ISM density varies by x10
- Ejecta
- Revealed by equivalent-width maps
- Mg Si rich, no strong O or Ne
Park, Hughes, Slane, Burrows, Garmire, Nousek
2003, ApJ, submitted.
24SNR 0103-72.6
- Middle-aged SNR
- 87 (25 pc) in radius
- gt10,000 yrs old (?)
- Circular rim
- SMC composition
- Central bright region
- O, Ne, Mg, Si-rich ejecta
- No Fe enhancement
Park, et al 2003, ApJ, in prep.
25Summary
- Core Collapse SNe
- Cas A
- X-ray ejecta dominated by Si, S, and Fe
- explosive nucleosynthesis
- Extensive mixing and overturning of ejecta layers
- G292.01.8
- X-ray ejecta dominated by O, Ne, and Mg (no Fe)
- Ambient medium strongly modified by progenitor
- Contains normal young pulsar and its wind
nebula
Highly Structured Ejecta/Environment
26Summary
- Thermonuclear SNe (Tycho, E0509-67.5)
- X-ray ejecta dominated by Si, S, and Fe
- Stratification (most of the Fe core unshocked)
- Fe higher kT, lower net due to
- evolution (ejecta density profile)
- radioactivity
- Ejecta relatively smooth and symmetric
- only factor of 2 intensity variations
- little spectral variation
- few (one or two) clumps of Fe-rich ejecta
27Summary
- Evolved LMC SNRs
- Global X-ray abundances consistent with
optical/UV values - Individual SNRs show obvious signs of ejecta
- DEM L71 4,000 yrs, Si and Fe-rich SN Ia ejecta
- N49B 5,000-10,000 yrs, Mg and Si-rich ejecta
- E0103-72.6 10,000 yrs, O, Ne, and Mg-rich
ejecta - Issues for nucleosynthesis models
- O/Ne ratio lt 1 (G292.01.8)
- O,Ne/Mg ltlt 1 (N49B)
28THE END
29SN Ia Spectra and Abundances
30Properties of DEM L71 Ejecta
- Outer rim lowered abundances, 0.2 solar (LMC
ISM) - Core enhanced Fe abundance, Fe/O gt 5 times
solar (ejecta) - Thick elliptical shell, 32 by 40 across (3.9 pc
by 4.8 pc) - Dynamical mass estimate
Wang Chevalier 2001
r 3.0 Mej 1.1 Mch (n/0.5 cm-3)
EM ne nFe V MFe lt 2 Msun
- Main error source of electrons
Fe-rich, low mass SN Ia
31N63A
- Middle-aged SNR
- 34 (8.2 pc) in radius
- 2000-5000 yrs old
- 2nd brightest LMC SNR
- Crescent-shaped features
- Similar to features in Vela
- Clumps of high speed ejecta
- Not ejecta dominated
- Triangular hole
- X-ray absorption
- Approx. 450 solar mass cloud
- On near side
- No PSR or PWN
- LX lt 4x1034 erg s-1
Warren, Hughes, Slane, ApJ, in press (20 Jan
2003)