Title: Sullivan Algebra and Trigonometry: Section 5.3 Exponential Functions
1Sullivan Algebra and Trigonometry Section
5.3Exponential Functions
- Objectives of this Section
- Evaluate Exponential Functions
- Graph Exponential Functions
- Define the Number e
- Solve Exponential Equations
2An exponential function is a function of the form
where a is a positive real number (a gt 0) and a
1. The domain of f is the set of all real
numbers.
3Using a calculator to evaluate an exponential
function
Example Find 2 1.41
2
yx
1.41
On a scientific calculator
2
1.41
On a graphing calculator
2 1.41 2.657371628...
4The graph of a basic exponential function can be
readily obtain using point plotting.
(1, 6)
6x
3x
(1, 3)
(-1, 1/3)
(-1, 1/6)
(0, 1)
5Domain All real numbers Range (0, ) No
x-intercepts y-intercept (0,1) Horizontal
asymptote y 0 as x Increasing
function One-to-one
6Summary of the Characteristics of the graph of
Domain All real numbers Range (0, ) No
x-intercepts y-intercept (0,1) Horizontal
asymptote y 0 as x Decreasing
function One-to-one
7(-1, 6)
(-1, 3)
(0, 1)
(1, 1/3)
(1, 1/6)
8Graph and determine the
domain, range, and horizontal asymptote of f.
9(-1, 5)
(0, 3)
y 2
Domain All real numbers
Range y y gt2 or (2, )
Horizontal Asymptote y 2
10(No Transcript)
11(No Transcript)
12Solve the following equations for x.