Title: Knight
1Knights Tour using Graph Theory
By Drew Moen
2Graph Theory History
- Leonhard Euler - founder
- The Seven Bridges of Königsberg
- Cross every Bridge once
- Change the city into a graph
- Change the graph into a matrix
3Applications
- Programming
- Engineering
- Communications
- Circuitry
- Social Networks
- Shortest Path
4Knights Tour
- Hamilton Path
- A path that visits every vertex on a graph one
time - Knights Tour
- A path that a knight takes on a nxn or nxm
checkerboard to visit every vertex once - Setup
- Create a graph
- Model graph with a matrix
5Purpose
- Finding new ways to solve for a knights tour
- Figuring out where a knight can arrive with a
restricted amount of moves - Finding out how many moves a knight needs to get
anywhere on the board
6Graph
7Matrix
Four by FourB0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0
1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 1 0 0
0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0
0 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0
0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0
Three by ThreeC0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 1 0 1 0 0 0 1 0
0 0 1 0 0 0 1 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0 0 0 1 0 1 0
0 0 0 0
8Matrix Application
- A2All locations a knight can travel in two moves
- A3 three moves, A4, A5, A6
C2 2 0 1 0 0 0 1 0 0 0 2 0 1 0 1 0 0
0 1 0 2 0 0 0 0 0 1 0 1 0 2 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 2 0 1 0 1 0 0 0 0 0 2 0 1
0 0 0 1 0 1 0 2 0 0 0 1 0 0 0 1 0 2
9More Moves
C5 0 6 0 6 0 10 0 10 0
6 0 6 0 0 0 10 0
10 0 6 0 10 0 6 0 10
0 6 0 10 0 0 0 6
0 10 0 0 0 0 0 0 0
0 0 10 0 6 0 0 0
10 0 6 0 10 0 6 0 10
0 6 0 10 0 10 0 0 0
6 0 6 0 10 0 10 0
6 0 6 0
C3 0 1 0 1 0 3 0 3 0 1 0 1 0 0 0 3 0
3 0 1 0 3 0 1 0 3 0 1 0 3 0 0
0 1 0 3 0 0 0 0 0 0 0 0 0 3 0
1 0 0 0 3 0 1 0 3 0 1 0 3 0 1 0
3 0 3 0 0 0 1 0 1 0 3 0 3 0 1 0 1 0
C4 6 0 4 0 0 0 4 0 2 0 6 0 4 0 4 0 2
0 4 0 6 0 0 0 2 0 4 0 4 0 6 0 2
0 4 0 0 0 0 0 0 0 0 0 0 0 4 0 2
0 6 0 4 0 4 0 2 0 0 0 6 0 4 0 2
0 4 0 4 0 6 0 2 0 4 0 0 0 4 0 6
10Patterns
0 496 0 496 0 528
0 528 0 496 0
496 0 0 0 528 0
528 0 496 0 528 0
496 0 528 0 496 0
528 0 0 0 496 0
528 0 0 0 0
0 0 0 0 0
528 0 496 0 0 0
528 0 496 0 528 0
496 0 528 0 496 0
528 0 528 0 0
0 496 0 496 0
528 0 528 0 496 0
496 0
C11 C10
272 0 256 0 0 0
256 0 240 0 272 0
256 0 256 0 240
0 256 0 272 0 0
0 240 0 256 0
256 0 272 0 240 0
256 0 0 0 0
0 0 0 0 0 0
0 256 0 240 0
272 0 256 0 256 0
240 0 0 0 272 0
256 0 240 0 256
0 256 0 272 0 240
0 256 0 0 0
256 0 272
11Works Cited
- Rosen, Kenneth H.. Discrete Mathematics and Its
Applications. Fifth. New York, NY McGraw-Hill,
2003. - Strang, Gilbert. Introduction to Linear Algebra.
Third. Wellesley MA Wellesley-Cambridge Press,
2003. - Houry, J K.. "Application to Graph theory." 11
Nov 2008 lthttp//aix1.uottawa.ca/jkhoury/graph.ht
mgt. - Ramas, Amy. "Art of Knight Graph." knight_tour.
04 July 2007. 16 Dec 2008 lthttp//wiki.phiepsilon.
org/doku.php?idknight_tourgt. - "Graph Theory Knight's Tour." 18 Dec 2008
lthttp//en.wikipedia.orggt. - Farmer, Jesse. "Graph Theory." 31 July 2007. 15
Dec 2008 lthttp//20bits.com/articles/graph-theorygt
. - Hickethier, Don. QA interview. 17 Dec 2008.