Title: Manipulate%20real%20and%20complex%20numbers%20and%20solve%20equations
1Manipulate real and complex numbers and solve
equations
2Worksheet 1
3Quadratics
General formula
General solution
4Example 1
Equation cannot be factorised.
5Using quadratic formula
We use the substitution
A complex number
6The equation has 2 complex solutions
Imaginary
Real
7Equation has 2 complex solutions.
8Example 2
9Example 2
10Example 2
11Adding complex numbers
Subtracting complex numbers
12Example
13Example
14(x  yi)(u  vi) (xu  yv)  (xv  yu)i.
Multiplying Complex Numbers
15Example
16Example
17Example 2
18Conjugate
If
The conjugate of z is
If
The conjugate of z is
19Dividing Complex Numbers
20Example
21Example
22Example
23Solving by matching terms
Match real and imaginary Real Imaginary
24Solving polynomials
Quadratics 2 solutions
2 real roots
2 complex roots
25If coefficients are all real, imaginary roots are
in conjugate pairs
26If coefficients are all real, imaginary roots are
in conjugate pairs
27Cubic
Cubics 3 solutions
3 real roots
1 real and 2 complex roots
28Quartic
Quartic 4 solutions
2 real and 2 imaginary roots
4 real roots
4 imaginary roots
29Solving a cubic
This cubic must have at least 1 real solutions
Form the quadratic.
Solve the quadratic for the other solutions
x 1, -1 - i, 1 i
30Finding other solutions when you are given one
solution.
Because coefficients are real, roots come in
conjugate pairs so
Form the quadratic i.e.
Form the cubic
31Argand Diagram
32Just mark the spot with a cross
33Plot z 3 i
z
34(No Transcript)
35(No Transcript)
36z i
z 1
z -1
z -i
37(No Transcript)
38(No Transcript)
39Multiplying a complex number by a real
number.(x  yi) u xu  yu i.
40(No Transcript)
41Multiplying a complex number by i.z i
(x  yi) i y  xi.
42Reciprocal of z
Conjugate
43Rectangular to polar form
Using Pythagoras Modulus is the length
Argument is the angle
Check the quadrant of the complex number
44Modulus is the length
45Example 1
Rectangular form
Polar form
46Example 2
47Example 3
48Converting from polar to rectangular
49Multiplying numbers in polar form
Example 1
50Multiplying numbers in polar form
Example 2
Take out multiples of
51Remove all multiples of
52De Moivres Theorem
Example 1
53De Moivres Theorem
Example 2
Take out multiples of
54Solving equations using De Moivres Theorem
1. Put into polar form
2. Add in multiples of
4th root 81
3. Fourth root
4. Generate solutions Letting n 0, 1, 2, 3
Divide angle by 4
55Take note
56Useful websites
Good general level http//www.clarku.edu/djoyce/c
omplex/ Advanced level http//mathworld.wolfram.c
om/ComplexNumber.html Good general
level http//www.purplemath.com/modules/complex.ht
m Good general level- Also gives
proofs http//www.sosmath.com/complex/complex.html
Problems at 3 levels http//www.ping.be/ping133
9/Pcomplex.htmREAD-THIS-FIRST